Tempered stable distributions and finite variation Ornstein-Uhlenbeck processes
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Fred Espen Benth & Anca Pircalabu, 2018. "A non-Gaussian Ornstein–Uhlenbeck model for pricing wind power futures," Applied Mathematical Finance, Taylor & Francis Journals, vol. 25(1), pages 36-65, January.
- Matteo Gardini & Piergiacomo Sabino & Emanuela Sasso, 2020. "A bivariate Normal Inverse Gaussian process with stochastic delay: efficient simulations and applications to energy markets," Papers 2011.04256, arXiv.org.
- Piergiacomo Sabino, 2020. "Exact Simulation of Variance Gamma related OU processes: Application to the Pricing of Energy Derivatives," Papers 2004.06786, arXiv.org.
- Taufer, Emanuele & Leonenko, Nikolai, 2009.
"Simulation of Lvy-driven Ornstein-Uhlenbeck processes with given marginal distribution,"
Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2427-2437, April.
- Emanuele Taufer & Nikolai Leonenko, 2007. "Simulation of Lévy-driven Ornstein-Uhlenbeck processes with given marginal distribution," Quaderni DISA 123, Department of Computer and Management Sciences, University of Trento, Italy, revised 23 May 2007.
- Shin Kim, Young & Rachev, Svetlozar T. & Leonardo Bianchi, Michele & Fabozzi, Frank J., 2010.
"Tempered stable and tempered infinitely divisible GARCH models,"
Journal of Banking & Finance, Elsevier, vol. 34(9), pages 2096-2109, September.
- Kim, Young Shin & Rachev, Svetlozar T. & Bianchi, Michele Leonardo & Fabozzi, Frank J., 2011. "Tempered stable and tempered infinitely divisible GARCH models," Working Paper Series in Economics 28, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
- Ole E. Barndorff‐Nielsen & Neil Shephard, 2003. "Integrated OU Processes and Non‐Gaussian OU‐based Stochastic Volatility Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(2), pages 277-295, June.
- T. Pellegrino & P. Sabino, 2015. "Enhancing Least Squares Monte Carlo with diffusion bridges: an application to energy facilities," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 761-772, May.
- Michele Bianchi & Frank Fabozzi, 2015. "Investigating the Performance of Non-Gaussian Stochastic Intensity Models in the Calibration of Credit Default Swap Spreads," Computational Economics, Springer;Society for Computational Economics, vol. 46(2), pages 243-273, August.
- Piergiacomo Sabino, 2020. "Exact Simulation of Variance Gamma-Related OU Processes: Application to the Pricing of Energy Derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(3), pages 207-227, May.
- Piergiacomo Sabino, 2020. "Forward or backward simulation? A comparative study," Quantitative Finance, Taylor & Francis Journals, vol. 20(7), pages 1213-1226, July.
- Fred Espen Benth & Luca Di Persio & Silvia Lavagnini, 2018. "Stochastic Modeling of Wind Derivatives in Energy Markets," Risks, MDPI, vol. 6(2), pages 1-21, May.
- Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
- Rosinski, Jan, 2007. "Tempering stable processes," Stochastic Processes and their Applications, Elsevier, vol. 117(6), pages 677-707, June.
- Nicola Cufaro Petroni & Piergiacomo Sabino, 2020. "Gamma Related Ornstein-Uhlenbeck Processes and their Simulation," Papers 2003.08810, arXiv.org.
- Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
- Matteo Gardini & Piergiacomo Sabino & Emanuela Sasso, 2020. "Correlating L\'evy processes with Self-Decomposability: Applications to Energy Markets," Papers 2004.04048, arXiv.org, revised Jul 2020.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- M. Gardini & P. Sabino & E. Sasso, 2021. "The Variance Gamma++ Process and Applications to Energy Markets," Papers 2106.15452, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Piergiacomo Sabino, 2021. "Pricing Energy Derivatives in Markets Driven by Tempered Stable and CGMY Processes of Ornstein-Uhlenbeck Type," Papers 2103.13252, arXiv.org.
- Piergiacomo Sabino, 2021. "Normal Tempered Stable Processes and the Pricing of Energy Derivatives," Papers 2105.03071, arXiv.org.
- Piergiacomo Sabino & Nicola Cufaro Petroni, 2022. "Fast simulation of tempered stable Ornstein–Uhlenbeck processes," Computational Statistics, Springer, vol. 37(5), pages 2517-2551, November.
- Matteo Gardini & Piergiacomo Sabino & Emanuela Sasso, 2020. "A bivariate Normal Inverse Gaussian process with stochastic delay: efficient simulations and applications to energy markets," Papers 2011.04256, arXiv.org.
- Piergiacomo Sabino, 2020. "Exact Simulation of Variance Gamma related OU processes: Application to the Pricing of Energy Derivatives," Papers 2004.06786, arXiv.org.
- Roberto Baviera & Pietro Manzoni, 2024. "Fast and General Simulation of L\'evy-driven OU processes for Energy Derivatives," Papers 2401.15483, arXiv.org, revised Sep 2024.
- M. Gardini & P. Sabino & E. Sasso, 2021. "The Variance Gamma++ Process and Applications to Energy Markets," Papers 2106.15452, arXiv.org.
- Nicola Cufaro Petroni & Piergiacomo Sabino, 2020. "Gamma Related Ornstein-Uhlenbeck Processes and their Simulation," Papers 2003.08810, arXiv.org.
- Gong, Xiaoli & Zhuang, Xintian, 2017. "American option valuation under time changed tempered stable Lévy processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 57-68.
- Michele Leonardo Bianchi & Svetlozar T. Rachev & Frank J. Fabozzi, 2018.
"Calibrating the Italian Smile with Time-Varying Volatility and Heavy-Tailed Models,"
Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 339-378, March.
- Michele Leonardo Bianchi & Frank J. Fabozzi & Svetlozar T. Rachev, 2014. "Calibrating the Italian smile with time-varying volatility and heavy-tailed models," Temi di discussione (Economic working papers) 944, Bank of Italy, Economic Research and International Relations Area.
- Tim Leung & Kevin W. Lu, 2023. "Monte Carlo Simulation for Trading Under a L\'evy-Driven Mean-Reverting Framework," Papers 2309.05512, arXiv.org, revised Jan 2024.
- Matteo Gardini & Piergiacomo Sabino & Emanuela Sasso, 2021. "Correlating Lévy processes with self-decomposability: applications to energy markets," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 1253-1280, December.
- Shu, Yin & Feng, Qianmei & Liu, Hao, 2019. "Using degradation-with-jump measures to estimate life characteristics of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
- Emanuele Taufer, 2008. "Characteristic function estimation of non-Gaussian Ornstein-Uhlenbeck processes," DISA Working Papers 0805, Department of Computer and Management Sciences, University of Trento, Italy, revised 07 Jul 2008.
- Gong, Xiao-li & Zhuang, Xin-tian, 2016. "Option pricing and hedging for optimized Lévy driven stochastic volatility models," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 118-127.
- Raknerud, Arvid & Skare, Øivind, 2012. "Indirect inference methods for stochastic volatility models based on non-Gaussian Ornstein–Uhlenbeck processes," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3260-3275.
- Kevin W. Lu, 2022. "Calibration for multivariate Lévy-driven Ornstein-Uhlenbeck processes with applications to weak subordination," Statistical Inference for Stochastic Processes, Springer, vol. 25(2), pages 365-396, July.
- Nicola Cufaro Petroni & Piergiacomo Sabino, 2019. "Fast Pricing of Energy Derivatives with Mean-reverting Jump-diffusion Processes," Papers 1908.03137, arXiv.org, revised Mar 2020.
- Lorenzo Mercuri & Edit Rroji, 2018. "Risk parity for Mixed Tempered Stable distributed sources of risk," Annals of Operations Research, Springer, vol. 260(1), pages 375-393, January.
- Deschatre, Thomas & Féron, Olivier & Gruet, Pierre, 2021. "A survey of electricity spot and futures price models for risk management applications," Energy Economics, Elsevier, vol. 102(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2011.09147. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.