Exploring volatility of crude oil intraday return curves: A functional GARCH-X model
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jcomm.2023.100361
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Horváth, Lajos & Kokoszka, Piotr & Rice, Gregory, 2014. "Testing stationarity of functional time series," Journal of Econometrics, Elsevier, vol. 179(1), pages 66-82.
- Alexander Aue & Lajos Horváth & Daniel F. Pellatt, 2017.
"Functional Generalized Autoregressive Conditional Heteroskedasticity,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 38(1), pages 3-21, January.
- Aue, Alexander & Horvath, Lajos & Pellatt, Daniel, 2015. "Functional generalized autoregressive conditional heteroskedasticity," MPRA Paper 67702, University Library of Munich, Germany.
- Smales, L.A., 2017. "Commodity market volatility in the presence of U.S. and Chinese macroeconomic news," Journal of Commodity Markets, Elsevier, vol. 7(C), pages 15-27.
- Ole E. Barndorff-Nielsen & Neil Shephard, 2006.
"Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation,"
Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
- Neil Shephard & Ole Barndorff-Nielsen, 2003. "Econometrics of testing for jumps in financial economics using bipower variation," Economics Series Working Papers 2004-FE-01, University of Oxford, Department of Economics.
- Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Econometrics of testing for jumps in financial economics using bipower variationÂ," OFRC Working Papers Series 2004fe01, Oxford Financial Research Centre.
- Ole E. Barndorff-Nielsen & Neil Shephard, 2003. "Econometrics of testing for jumps in financial economics using bipower variation," Economics Papers 2003-W21, Economics Group, Nuffield College, University of Oxford.
- Tim Bollerslev & Benjamin Hood & John Huss & Lasse Heje Pedersen, 2018.
"Risk Everywhere: Modeling and Managing Volatility,"
The Review of Financial Studies, Society for Financial Studies, vol. 31(7), pages 2729-2773.
- Pedersen, Lasse Heje & Bollerslev, Tim & Hood, Benjamin & Huss, John, 2018. "Risk Everywhere: Modeling and Managing Volatility," CEPR Discussion Papers 12687, C.E.P.R. Discussion Papers.
- Degui Li & Peter M. Robinson & Han Lin Shang, 2020. "Long-Range Dependent Curve Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(530), pages 957-971, April.
- Andersen, Torben G & Bollerslev, Tim, 1997.
"Heterogeneous Information Arrivals and Return Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns,"
Journal of Finance, American Finance Association, vol. 52(3), pages 975-1005, July.
- Torben G. Andersen & Tim Bollerslev, 1996. "Heterogeneous Information Arrivals and Return Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns," NBER Working Papers 5752, National Bureau of Economic Research, Inc.
- Charles, Amélie & Darné, Olivier, 2014.
"Volatility persistence in crude oil markets,"
Energy Policy, Elsevier, vol. 65(C), pages 729-742.
- Amélie Charles & Olivier Darné, 2012. "Volatility Persistence in Crude Oil Markets," Working Papers hal-00719387, HAL.
- Amélie Charles & Olivier Darné, 2014. "Volatility persistence in crude oil markets," Post-Print hal-00940312, HAL.
- John Elder & Apostolos Serletis, 2008.
"Long memory in energy futures prices,"
Review of Financial Economics, John Wiley & Sons, vol. 17(2), pages 146-155.
- Elder, John & Serletis, Apostolos, 2008. "Long memory in energy futures prices," Review of Financial Economics, Elsevier, vol. 17(2), pages 146-155.
- Dudley Gilder & Leonidas Tsiaras, 2020. "Volatility forecasts embedded in the prices of crude‐oil options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(7), pages 1127-1159, July.
- Hao Sun & Bo Yu, 2020. "Volatility asymmetry in functional threshold GARCH model," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(1), pages 95-109, January.
- Cerovecki, Clément & Francq, Christian & Hörmann, Siegfried & Zakoïan, Jean-Michel, 2019.
"Functional GARCH models: The quasi-likelihood approach and its applications,"
Journal of Econometrics, Elsevier, vol. 209(2), pages 353-375.
- Cerovecki, Clément & Francq, Christian & Hormann, Siegfried & Zakoian, Jean-Michel, 2018. "Functional GARCH models: the quasi-likelihood approach and its applications," MPRA Paper 83990, University Library of Munich, Germany.
- Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
- Alfeus, Mesias & Nikitopoulos, Christina Sklibosios, 2022. "Forecasting volatility in commodity markets with long-memory models," Journal of Commodity Markets, Elsevier, vol. 28(C).
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Kang, Boda & Nikitopoulos, Christina Sklibosios & Prokopczuk, Marcel, 2020.
"Economic determinants of oil futures volatility: A term structure perspective,"
Energy Economics, Elsevier, vol. 88(C).
- Boda Kang & Christina Sklibosios Nikitopoulos & Marcel Prokopczuk, 2019. "Economic Determinants of Oil Futures Volatility: A Term Structure Perspective," Research Paper Series 401, Quantitative Finance Research Centre, University of Technology, Sydney.
- Wei, Yu & Wang, Yudong & Huang, Dengshi, 2010. "Forecasting crude oil market volatility: Further evidence using GARCH-class models," Energy Economics, Elsevier, vol. 32(6), pages 1477-1484, November.
- Asger Lunde & Peter R. Hansen, 2005.
"A forecast comparison of volatility models: does anything beat a GARCH(1,1)?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
- Asger Lunde & Peter Reinhard Hansen, 2001. "A Forecast Comparison of Volatility Models: Does Anything Beat a GARCH(1,1)?," Working Papers 2001-04, Brown University, Department of Economics.
- Patton, Andrew J., 2011.
"Volatility forecast comparison using imperfect volatility proxies,"
Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
- Andrew Patton, 2006. "Volatility Forecast Comparison using Imperfect Volatility Proxies," Research Paper Series 175, Quantitative Finance Research Centre, University of Technology, Sydney.
- Piotr Kokoszka & Matthew Reimherr, 2013. "Determining the order of the functional autoregressive model," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(1), pages 116-129, January.
- Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
- Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2016.
"Exploiting the errors: A simple approach for improved volatility forecasting,"
Journal of Econometrics, Elsevier, vol. 192(1), pages 1-18.
- Tim Bollerslev & Andrew J. Patton & Rogier Quaedvlieg, 2015. "Exploiting the Errors: A Simple Approach for Improved Volatility Forecasting," CREATES Research Papers 2015-14, Department of Economics and Business Economics, Aarhus University.
- Fuertes, Ana-Maria & Izzeldin, Marwan & Kalotychou, Elena, 2009. "On forecasting daily stock volatility: The role of intraday information and market conditions," International Journal of Forecasting, Elsevier, vol. 25(2), pages 259-281.
- Antonakakis, Nikolaos & Cunado, Juncal & Filis, George & Gabauer, David & Perez de Gracia, Fernando, 2018.
"Oil volatility, oil and gas firms and portfolio diversification,"
Energy Economics, Elsevier, vol. 70(C), pages 499-515.
- Nikolaos Antonakakis & Juncal Cunado & George Filis & David Gabauer & Fernando Perez de Gracia, 2018. "Oil volatility, oil and gas firms and portfolio diversification," BAFES Working Papers BAFES18, Department of Accounting, Finance & Economic, Bournemouth University.
- Robert Engle, 2002. "New frontiers for arch models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 425-446.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Tomasz Górecki & Siegfried Hörmann & Lajos Horváth & Piotr Kokoszka, 2018. "Testing Normality of Functional Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(4), pages 471-487, July.
- Gregory Rice & Tony Wirjanto & Yuqian Zhao, 2020. "Tests for conditional heteroscedasticity of functional data," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(6), pages 733-758, November.
- Xu Gong & Boqiang Lin, 2021. "Effects of structural changes on the prediction of downside volatility in futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(7), pages 1124-1153, July.
- Heejoon Han, 2015. "Asymptotic Properties of GARCH-X Processes," Journal of Financial Econometrics, Oxford University Press, vol. 13(1), pages 188-221.
- Sévi, Benoît, 2014.
"Forecasting the volatility of crude oil futures using intraday data,"
European Journal of Operational Research, Elsevier, vol. 235(3), pages 643-659.
- Benoît Sévi, 2014. "Forecasting the volatility of crude oil futures using intraday data," Post-Print hal-01463921, HAL.
- Benoît Sévi, 2014. "Forecasting the volatility of crude oil futures using intraday data," Working Papers 2014-53, Department of Research, Ipag Business School.
- Kargin, V. & Onatski, A., 2008.
"Curve forecasting by functional autoregression,"
Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2508-2526, November.
- A. Onatski & V. Karguine, 2005. "Curve Forecasting by Functional Autoregression," Computing in Economics and Finance 2005 59, Society for Computational Economics.
- Hörmann, Siegfried & Horváth, Lajos & Reeder, Ron, 2013. "A Functional Version Of The Arch Model," Econometric Theory, Cambridge University Press, vol. 29(2), pages 267-288, April.
- Marcel Prokopczuk & Lazaros Symeonidis & Chardin Wese Simen, 2016. "Do Jumps Matter for Volatility Forecasting? Evidence from Energy Markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(8), pages 758-792, August.
- Peter Reinhard Hansen & Zhuo Huang & Howard Howan Shek, 2012. "Realized GARCH: a joint model for returns and realized measures of volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 877-906, September.
- Sadorsky, Perry, 2006. "Modeling and forecasting petroleum futures volatility," Energy Economics, Elsevier, vol. 28(4), pages 467-488, July.
- Christensen, Kim & Podolskij, Mark, 2007. "Realized range-based estimation of integrated variance," Journal of Econometrics, Elsevier, vol. 141(2), pages 323-349, December.
- Ivanovski, Kris & Hailemariam, Abebe, 2021. "Forecasting the dynamic relationship between crude oil and stock prices since the 19th century," Journal of Commodity Markets, Elsevier, vol. 24(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rice, Gregory & Wirjanto, Tony & Zhao, Yuqian, 2021. "Exploring volatility of crude oil intra-day return curves: a functional GARCH-X Model," MPRA Paper 109231, University Library of Munich, Germany.
- Lyócsa, Štefan & Todorova, Neda, 2021. "What drives volatility of the U.S. oil and gas firms?," Energy Economics, Elsevier, vol. 100(C).
- Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023.
"The contribution of jump signs and activity to forecasting stock price volatility,"
Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
- , 2019. "The Contribution of Jump Signs and Activity to Forecasting Stock Price Volatility," Working Papers 1902, Federal Reserve Bank of Dallas, revised 17 Dec 2022.
- Ruijun Bu & Rodrigo Hizmeri & Marwan Izzeldin & Anthony Murphy & Mike G. Tsionas, 2021. "The Contribution of Jump Signs and Activity to Forecasting Stock Price Volatility," Working Papers 202109, University of Liverpool, Department of Economics.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Papantonis, Ioannis & Rompolis, Leonidas & Tzavalis, Elias, 2023. "Improving variance forecasts: The role of Realized Variance features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1221-1237.
- Degiannakis, Stavros & Filis, George, 2017.
"Forecasting oil price realized volatility using information channels from other asset classes,"
Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
- Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," MPRA Paper 96276, University Library of Munich, Germany.
- Lyócsa, Štefan & Todorova, Neda & Výrost, Tomáš, 2021. "Predicting risk in energy markets: Low-frequency data still matter," Applied Energy, Elsevier, vol. 282(PA).
- Sévi, Benoît, 2014.
"Forecasting the volatility of crude oil futures using intraday data,"
European Journal of Operational Research, Elsevier, vol. 235(3), pages 643-659.
- Benoît Sévi, 2014. "Forecasting the volatility of crude oil futures using intraday data," Post-Print hal-01463921, HAL.
- Benoît Sévi, 2014. "Forecasting the volatility of crude oil futures using intraday data," Working Papers 2014-53, Department of Research, Ipag Business School.
- Riza Demirer & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2022.
"Risk aversion and the predictability of crude oil market volatility: A forecasting experiment with random forests,"
Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(8), pages 1755-1767, August.
- Riza Demirer & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2019. "Risk Aversion and the Predictability of Crude Oil Market Volatility: A Forecasting Experiment with Random Forests," Working Papers 201972, University of Pretoria, Department of Economics.
- Degiannakis, Stavros & Filis, George, 2016. "Forecasting oil price realized volatility: A new approach," MPRA Paper 69105, University Library of Munich, Germany.
- Dudley Gilder & Leonidas Tsiaras, 2020. "Volatility forecasts embedded in the prices of crude‐oil options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(7), pages 1127-1159, July.
- Liu, Jing & Ma, Feng & Yang, Ke & Zhang, Yaojie, 2018. "Forecasting the oil futures price volatility: Large jumps and small jumps," Energy Economics, Elsevier, vol. 72(C), pages 321-330.
- repec:ipg:wpaper:2014-053 is not listed on IDEAS
- Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020.
"Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss,"
Journal of International Money and Finance, Elsevier, vol. 104(C).
- Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2019. "Forecasting Realized Oil-Price Volatility: The Role of Financial Stress and Asymmetric Loss," Working Papers 201903, University of Pretoria, Department of Economics.
- Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015.
"Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes,"
Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
- Kevin Sheppard & Lily Liu & Andrew J. Patton, 2013. "Does Anything Beat 5-Minute RV? A Comparison of Realized Measures Across Multiple Asset Classes," Economics Series Working Papers 645, University of Oxford, Department of Economics.
- Nikitopoulos, Christina Sklibosios & Thomas, Alice Carole & Wang, Jianxin, 2023. "The economic impact of daily volatility persistence on energy markets," Journal of Commodity Markets, Elsevier, vol. 30(C).
- Alfeus, Mesias & Nikitopoulos, Christina Sklibosios, 2022. "Forecasting volatility in commodity markets with long-memory models," Journal of Commodity Markets, Elsevier, vol. 28(C).
- Papantonis Ioannis & Rompolis Leonidas S. & Tzavalis Elias & Agapitos Orestis, 2023. "Augmenting the Realized-GARCH: the role of signed-jumps, attenuation-biases and long-memory effects," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 27(2), pages 171-198, April.
- Chen, Yixiang & Ma, Feng & Zhang, Yaojie, 2019. "Good, bad cojumps and volatility forecasting: New evidence from crude oil and the U.S. stock markets," Energy Economics, Elsevier, vol. 81(C), pages 52-62.
- Wei Zhang & Kai Yan & Dehua Shen, 2021. "Can the Baidu Index predict realized volatility in the Chinese stock market?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-31, December.
- Liu, Jing & Wei, Yu & Ma, Feng & Wahab, M.I.M., 2017. "Forecasting the realized range-based volatility using dynamic model averaging approach," Economic Modelling, Elsevier, vol. 61(C), pages 12-26.
More about this item
Keywords
WTI crude oil intraday return curves; Volatility modelling and forecasting; Functional GARCH-X model; Long-range dependence; Economic benefits;All these keywords.
JEL classification:
- C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
- G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jocoma:v:32:y:2023:i:c:s240585132300051x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jcomm .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.