IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1703.06603.html
   My bibliography  Save this paper

A New Class of Discrete-time Stochastic Volatility Model with Correlated Errors

Author

Listed:
  • Sujay Mukhoti
  • Pritam Ranjan

Abstract

In an efficient stock market, the returns and their time-dependent volatility are often jointly modeled by stochastic volatility models (SVMs). Over the last few decades several SVMs have been proposed to adequately capture the defining features of the relationship between the return and its volatility. Among one of the earliest SVM, Taylor (1982) proposed a hierarchical model, where the current return is a function of the current latent volatility, which is further modeled as an auto-regressive process. In an attempt to make the SVMs more appropriate for complex realistic market behavior, a leverage parameter was introduced in the Taylor SVM, which however led to the violation of the efficient market hypothesis (EMH, a necessary mean-zero condition for the return distribution that prevents arbitrage possibilities). Subsequently, a host of alternative SVMs had been developed and are currently in use. In this paper, we propose mean-corrections for several generalizations of Taylor SVM that capture the complex market behavior as well as satisfy EMH. We also establish a few theoretical results to characterize the key desirable features of these models, and present comparison with other popular competitors. Furthermore, four real-life examples (Oil price, CITI bank stock price, Euro-USD rate, and S&P 500 index returns) have been used to demonstrate the performance of this new class of SVMs.

Suggested Citation

  • Sujay Mukhoti & Pritam Ranjan, 2017. "A New Class of Discrete-time Stochastic Volatility Model with Correlated Errors," Papers 1703.06603, arXiv.org.
  • Handle: RePEc:arx:papers:1703.06603
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1703.06603
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Campbell, John Y. & Hentschel, Ludger, 1992. "No news is good news *1: An asymmetric model of changing volatility in stock returns," Journal of Financial Economics, Elsevier, vol. 31(3), pages 281-318, June.
    2. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
    3. Diebold, Francis X & Nerlove, Marc, 1989. "The Dynamics of Exchange Rate Volatility: A Multivariate Latent Factor Arch Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 4(1), pages 1-21, Jan.-Mar..
    4. Aït-Sahalia, Yacine & Fan, Jianqing & Li, Yingying, 2013. "The leverage effect puzzle: Disentangling sources of bias at high frequency," Journal of Financial Economics, Elsevier, vol. 109(1), pages 224-249.
    5. Abanto-Valle, C.A. & Bandyopadhyay, D. & Lachos, V.H. & Enriquez, I., 2010. "Robust Bayesian analysis of heavy-tailed stochastic volatility models using scale mixtures of normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2883-2898, December.
    6. Michel Beine & Jérôme Lahaye & Sébastien Laurent & Christopher J. Neely & Franz C. Palm, 2007. "Central bank intervention and exchange rate volatility, its continuous and jump components," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 12(2), pages 201-223.
    7. Du, Xiaodong & Yu, Cindy L. & Hayes, Dermot J., 2011. "Speculation and volatility spillover in the crude oil and agricultural commodity markets: A Bayesian analysis," Energy Economics, Elsevier, vol. 33(3), pages 497-503, May.
    8. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    9. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    10. Berg, Andreas & Meyer, Renate & Yu, Jun, 2004. "Deviance Information Criterion for Comparing Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 107-120, January.
    11. Bekaert, Geert & Wu, Guojun, 2000. "Asymmetric Volatility and Risk in Equity Markets," The Review of Financial Studies, Society for Financial Studies, vol. 13(1), pages 1-42.
    12. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.
    13. Manabu Asai & Michael McAleer, 2009. "Multivariate stochastic volatility, leverage and news impact surfaces," Econometrics Journal, Royal Economic Society, vol. 12(2), pages 292-309, July.
    14. Asai, Manabu, 2008. "Autoregressive stochastic volatility models with heavy-tailed distributions: A comparison with multifactor volatility models," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 332-341, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    2. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    3. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "The Distribution of Exchange Rate Volatility," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-059, New York University, Leonard N. Stern School of Business-.
    4. Xi, Yanhui & Peng, Hui & Qin, Yemei & Xie, Wenbiao & Chen, Xiaohong, 2015. "Bayesian analysis of heavy-tailed market microstructure model and its application in stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 117(C), pages 141-153.
    5. Jensen, Mark J. & Maheu, John M., 2014. "Estimating a semiparametric asymmetric stochastic volatility model with a Dirichlet process mixture," Journal of Econometrics, Elsevier, vol. 178(P3), pages 523-538.
    6. Sujay Mukhoti & Pritam Ranjan, 2016. "Mean-correction and Higher Order Moments for a Stochastic Volatility Model with Correlated Errors," Papers 1605.02418, arXiv.org.
    7. Asai, Manabu & Caporin, Massimiliano & McAleer, Michael, 2015. "Forecasting Value-at-Risk using block structure multivariate stochastic volatility models," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 40-50.
    8. Omar Euch & Masaaki Fukasawa & Mathieu Rosenbaum, 2018. "The microstructural foundations of leverage effect and rough volatility," Finance and Stochastics, Springer, vol. 22(2), pages 241-280, April.
    9. Patricia Lengua Lafosse & Cristian Bayes & Gabriel Rodríguez, 2015. "A Stochastic Volatility Model with GH Skew Student’s t-Distribution: Application to Latin-American Stock Returns," Documentos de Trabajo / Working Papers 2015-405, Departamento de Economía - Pontificia Universidad Católica del Perú.
    10. repec:cte:wsrepe:ws131110 is not listed on IDEAS
    11. Lengua Lafosse, Patricia & Rodríguez, Gabriel, 2018. "An empirical application of a stochastic volatility model with GH skew Student's t-distribution to the volatility of Latin-American stock returns," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 155-173.
    12. Mukhoti, Sujay, 2014. "Non-Stationary Stochastic Volatility Model for Dynamic Feedback and Skewness," MPRA Paper 62532, University Library of Munich, Germany.
    13. El Euch Omar & Fukasawa Masaaki & Rosenbaum Mathieu, 2016. "The microstructural foundations of leverage effect and rough volatility," Papers 1609.05177, arXiv.org.
    14. Duc Huynh, Toan Luu & Burggraf, Tobias & Nasir, Muhammad Ali, 2020. "Financialisation of natural resources & instability caused by risk transfer in commodity markets," Resources Policy, Elsevier, vol. 66(C).
    15. Asai, Manabu & McAleer, Michael, 2015. "Leverage and feedback effects on multifactor Wishart stochastic volatility for option pricing," Journal of Econometrics, Elsevier, vol. 187(2), pages 436-446.
    16. Joshua C.C. Chan & Angelia L. Grant, 2014. "Issues in Comparing Stochastic Volatility Models Using the Deviance Information Criterion," CAMA Working Papers 2014-51, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    17. Asai, Manabu & McAleer, Michael, 2015. "Forecasting co-volatilities via factor models with asymmetry and long memory in realized covariance," Journal of Econometrics, Elsevier, vol. 189(2), pages 251-262.
    18. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    19. Manabu Asai & Michael McAleer, 2011. "Alternative Asymmetric Stochastic Volatility Models," Econometric Reviews, Taylor & Francis Journals, vol. 30(5), pages 548-564, October.
    20. Tim Bollerslev & Hao Zhou, 2003. "Volatility puzzles: a unified framework for gauging return-volatility regressions," Finance and Economics Discussion Series 2003-40, Board of Governors of the Federal Reserve System (U.S.).
    21. Siem Jan Koopman & Eugenie Hol Uspensky, 2002. "The stochastic volatility in mean model: empirical evidence from international stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 667-689.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1703.06603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.