IDEAS home Printed from https://ideas.repec.org/a/bpj/bejmac/v13y2013i1p48n1.html
   My bibliography  Save this article

Is the “Great Recession” really so different from the past?

Author

Listed:
  • Chiu Adrian

    (External MPC Unit, Bank of England, Threadneedle Street, London, EC2 8AHR, UK)

  • Wieladek Tomasz

    (External MPC Unit, Bank of England, Threadneedle Street, London, EC2 8AHR, UK)

Abstract

Based on the decline in real GDP growth, many economists now believe that the “Great Recession” is the deepest global economic contraction since the Great Depression. But as real-time real GDP data is typically revised, we investigate if the decline in, and total output loss (severity) of, G-7 real GDP during the “Great Recession” is really so different from the past. We use a GDP weighted average of, as well as a dynamic common factor extracted from, real-time G-7 real GDP data to verify if this is the case. Furthermore, we use a Mincer and Zarnowitz [Mincer, J., and V. Zarnowitz. 1969. “The Evaluation of Economic Forecasts.” NBER Volume: Economic Forecasts and Expectations: Analysis of Forecasting Behaviour and Performance, pp. 1–46.] forecast efficiency regression to predict the revision to G-7 real GDP growth during the “Great Recession,” based on outturns of unrevised variables. In real-time data, the depth and intensity of the “Great Recession” are similar to the mid-1970s recession. The Mincer and Zarnowitz model predicts significant revisions to G-7 real GDP for 2008Q4 and 2009Q1 of about 0.81% and 1.08%, respectively. Together these facts imply that G-7 real GDP growth during the “Great Recession” may yet be revised to be in line with past deep recessions.

Suggested Citation

  • Chiu Adrian & Wieladek Tomasz, 2013. "Is the “Great Recession” really so different from the past?," The B.E. Journal of Macroeconomics, De Gruyter, vol. 13(1), pages 1037-1084, October.
  • Handle: RePEc:bpj:bejmac:v:13:y:2013:i:1:p:48:n:1
    DOI: 10.1515/bejm-2012-0007
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/bejm-2012-0007
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/bejm-2012-0007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. S. Borağan Aruoba & Francis X. Diebold & M. Ayhan Kose & Marco E. Terrones, 2011. "Globalization, the Business Cycle, and Macroeconomic Monitoring," NBER International Seminar on Macroeconomics, University of Chicago Press, vol. 7(1), pages 245-286.
    2. Stark, Tom & Croushore, Dean, 2002. "Forecasting with a real-time data set for macroeconomists," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 507-531, December.
    3. Carmen Fernandez & Eduardo Ley & Mark F. J. Steel, 2001. "Model uncertainty in cross-country growth regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(5), pages 563-576.
    4. Jacob A. Mincer & Victor Zarnowitz, 1969. "The Evaluation of Economic Forecasts," NBER Chapters, in: Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, pages 3-46, National Bureau of Economic Research, Inc.
    5. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    6. S. Borağan Aruoba, 2008. "Data Revisions Are Not Well Behaved," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(2‐3), pages 319-340, March.
    7. M. Ayhan Kose & Christopher Otrok & Charles H. Whiteman, 2003. "International Business Cycles: World, Region, and Country-Specific Factors," American Economic Review, American Economic Association, vol. 93(4), pages 1216-1239, September.
    8. Gary Koop & Dimitris Korobilis, 2012. "Forecasting Inflation Using Dynamic Model Averaging," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 867-886, August.
    9. Xavier Sala-I-Martin & Gernot Doppelhofer & Ronald I. Miller, 2004. "Determinants of Long-Term Growth: A Bayesian Averaging of Classical Estimates (BACE) Approach," American Economic Review, American Economic Association, vol. 94(4), pages 813-835, September.
    10. Timothy Cogley & Giorgio E. Primiceri & Thomas J. Sargent, 2010. "Inflation-Gap Persistence in the US," American Economic Journal: Macroeconomics, American Economic Association, vol. 2(1), pages 43-69, January.
    11. Giuseppe De Luca & Jan R. Magnus, 2011. "Bayesian model averaging and weighted-average least squares: Equivariance, stability, and numerical issues," Stata Journal, StataCorp LP, vol. 11(4), pages 518-544, December.
    12. Magnus, Jan R. & Powell, Owen & Prüfer, Patricia, 2010. "A comparison of two model averaging techniques with an application to growth empirics," Journal of Econometrics, Elsevier, vol. 154(2), pages 139-153, February.
    13. Jacob A. Mincer, 1969. "Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance," NBER Books, National Bureau of Economic Research, Inc, number minc69-1.
    14. Alastair Cunningham & Jana Eklund & Chris Jeffery & George Kapetanios & Vincent Labhard, 2009. "A State Space Approach to Extracting the Signal From Uncertain Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 173-180, March.
    15. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    16. Faust, Jon & Rogers, John H & Wright, Jonathan H, 2005. "News and Noise in G-7 GDP Announcements," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 403-419, June.
    17. Ayhan Kose, M. & Otrok, Christopher & Whiteman, Charles H., 2008. "Understanding the evolution of world business cycles," Journal of International Economics, Elsevier, vol. 75(1), pages 110-130, May.
    18. Gregory, Allan W & Head, Allen C & Raynauld, Jacques, 1997. "Measuring World Business Cycles," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 38(3), pages 677-701, August.
    19. James H. Stock & Mark W. Watson, 2005. "Understanding Changes In International Business Cycle Dynamics," Journal of the European Economic Association, MIT Press, vol. 3(5), pages 968-1006, September.
    20. Jacobs, Jan P.A.M. & van Norden, Simon, 2011. "Modeling data revisions: Measurement error and dynamics of "true" values," Journal of Econometrics, Elsevier, vol. 161(2), pages 101-109, April.
    21. Jan R. Magnus & Giuseppe De Luca, 2016. "Weighted-Average Least Squares (Wals): A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 30(1), pages 117-148, February.
    22. Chiu, Adrian & Wieladek, Tomasz, 2012. "Did output gap measurement improve over time?," Discussion Papers 36, Monetary Policy Committee Unit, Bank of England.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gilhooly, Robert & Weale, Martin & Wieladek, Tomasz, 2012. "Disaggregating the international business cycle," Discussion Papers 37, Monetary Policy Committee Unit, Bank of England.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marek RUSNAK, 2013. "Revisions to the Czech National Accounts: Properties and Predictability," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(3), pages 244-261, July.
    2. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    3. Carlo Altavilla & Matteo Ciccarelli, 2011. "Monetary Policy Analysis in Real-Time. Vintage Combination from a Real-Time Dataset," CESifo Working Paper Series 3372, CESifo.
    4. Chiu, Adrian & Wieladek, Tomasz, 2012. "Did output gap measurement improve over time?," Discussion Papers 36, Monetary Policy Committee Unit, Bank of England.
    5. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    6. Hecq, Alain & Jacobs, Jan P.A.M. & Stamatogiannis, Michalis P., 2019. "Testing for news and noise in non-stationary time series subject to multiple historical revisions," Journal of Macroeconomics, Elsevier, vol. 60(C), pages 396-407.
    7. Jacobs, Jan P.A.M. & van Norden, Simon, 2011. "Modeling data revisions: Measurement error and dynamics of "true" values," Journal of Econometrics, Elsevier, vol. 161(2), pages 101-109, April.
    8. Clements, Michael P., 2019. "Do forecasters target first or later releases of national accounts data?," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1240-1249.
    9. Valentina Raponi & Cecilia Frale, 2014. "Revisions in official data and forecasting," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(3), pages 451-472, August.
    10. Clements, Michael P. & Beatriz Galvao, Ana, 2010. "Real-time Forecasting of Inflation and Output Growth in the Presence of Data Revisions," Economic Research Papers 270771, University of Warwick - Department of Economics.
    11. Michael P. Clements, 2014. "Anticipating Early Data Revisions to US GDP and the Effects of Releases on Equity Markets," ICMA Centre Discussion Papers in Finance icma-dp2014-06, Henley Business School, University of Reading.
    12. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    13. Diebold, Francis X. & Yilmaz, Kamil, 2015. "Financial and Macroeconomic Connectedness: A Network Approach to Measurement and Monitoring," OUP Catalogue, Oxford University Press, number 9780199338306.
    14. Maximo Camacho & Gabriel Perez-Quiros, 2010. "Introducing the euro-sting: Short-term indicator of euro area growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 663-694.
    15. Emilia Tomczyk, 2013. "End of sample vs. real time data: perspectives for analysis of expectations," Working Papers 68, Department of Applied Econometrics, Warsaw School of Economics.
    16. Croushore Dean, 2010. "An Evaluation of Inflation Forecasts from Surveys Using Real-Time Data," The B.E. Journal of Macroeconomics, De Gruyter, vol. 10(1), pages 1-32, May.
    17. Michael P. Clements, 2017. "Assessing Macro Uncertainty in Real-Time When Data Are Subject To Revision," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(3), pages 420-433, July.
    18. Ana Beatriz Galvão & James Mitchell, 2019. "Measuring Data Uncertainty: An Application using the Bank of England's "Fan Charts" for Historical GDP Growth," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2019-08, Economic Statistics Centre of Excellence (ESCoE).
    19. Bouwman, Kees E. & Jacobs, Jan P.A.M., 2011. "Forecasting with real-time macroeconomic data: The ragged-edge problem and revisions," Journal of Macroeconomics, Elsevier, vol. 33(4), pages 784-792.
    20. repec:wrk:wrkemf:24 is not listed on IDEAS
    21. Caroline Flodberg & Pär Österholm, 2017. "A Statistical Anaysis of Revisions in Swedish National Accounts Data," Finnish Economic Papers, Finnish Economic Association, vol. 28(1), pages 10-33, Autumn.

    More about this item

    Keywords

    dynamic common factor model; Great Recession; international business cycle; real-time data; JEL Classification Code: F44;
    All these keywords.

    JEL classification:

    • F44 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - International Business Cycles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:bejmac:v:13:y:2013:i:1:p:48:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.