IDEAS home Printed from https://ideas.repec.org/a/kap/annfin/v8y2012i2p205-233.html
   My bibliography  Save this article

Stochastic volatility and stochastic leverage

Author

Listed:
  • Almut Veraart
  • Luitgard Veraart

Abstract

This paper proposes the new concept of stochastic leverage in stochastic volatility models. Stochastic leverage refers to a stochastic process which replaces the classical constant correlation parameter between the asset return and the stochastic volatility process. We provide a systematic treatment of stochastic leverage and propose to model the stochastic leverage effect explicitly, e.g. by means of a linear transformation of a Jacobi process. Such models are both analytically tractable and allow for a direct economic interpretation. In particular, we propose two new stochastic volatility models which allow for a stochastic leverage effect: the generalised Heston model and the generalised Barndorff-Nielsen & Shephard model. We investigate the impact of a stochastic leverage effect in the risk neutral world by focusing on implied volatilities generated by option prices derived from our new models. Furthermore, we give a detailed account on statistical properties of the new models.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Almut Veraart & Luitgard Veraart, 2012. "Stochastic volatility and stochastic leverage," Annals of Finance, Springer, vol. 8(2), pages 205-233, May.
  • Handle: RePEc:kap:annfin:v:8:y:2012:i:2:p:205-233
    DOI: 10.1007/s10436-010-0157-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10436-010-0157-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10436-010-0157-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Tim Bollerslev & Julia Litvinova & George Tauchen, 2006. "Leverage and Volatility Feedback Effects in High-Frequency Data," Journal of Financial Econometrics, Oxford University Press, vol. 4(3), pages 353-384.
    2. Julie Lyng Forman & Michael Sørensen, 2008. "The Pearson Diffusions: A Class of Statistically Tractable Diffusion Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 438-465, September.
    3. Jacod, Jean, 2008. "Asymptotic properties of realized power variations and related functionals of semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 118(4), pages 517-559, April.
    4. Jacod, Jean & Li, Yingying & Mykland, Per A. & Podolskij, Mark & Vetter, Mathias, 2009. "Microstructure noise in the continuous case: The pre-averaging approach," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2249-2276, July.
    5. Ole BARNDORFF-NIELSEN & Svend Erik GRAVERSEN & Jean JACOD & Mark PODOLSKIJ & Neil SHEPHARD, 2004. "A Central Limit Theorem for Realised Power and Bipower Variations of Continuous Semimartingales," OFRC Working Papers Series 2004fe21, Oxford Financial Research Centre.
    6. Veraart, Almut E.D., 2010. "Inference For The Jump Part Of Quadratic Variation Of Itô Semimartingales," Econometric Theory, Cambridge University Press, vol. 26(2), pages 331-368, April.
    7. Suzanne S. Lee & Per A. Mykland, 2008. "Jumps in Financial Markets: A New Nonparametric Test and Jump Dynamics," The Review of Financial Studies, Society for Financial Studies, vol. 21(6), pages 2535-2563, November.
    8. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    9. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
    10. Blundell,Richard & Newey,Whitney & Persson,Torsten (ed.), 2007. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521871549.
    11. Todorov, Viktor, 2009. "Estimation of continuous-time stochastic volatility models with jumps using high-frequency data," Journal of Econometrics, Elsevier, vol. 148(2), pages 131-148, February.
    12. Griffin, J.E. & Steel, M.F.J., 2006. "Inference with non-Gaussian Ornstein-Uhlenbeck processes for stochastic volatility," Journal of Econometrics, Elsevier, vol. 134(2), pages 605-644, October.
    13. C. Gourieroux, 2006. "Continuous Time Wishart Process for Stochastic Risk," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 177-217.
    14. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    15. Ai[diaeresis]t-Sahalia, Yacine & Kimmel, Robert, 2007. "Maximum likelihood estimation of stochastic volatility models," Journal of Financial Economics, Elsevier, vol. 83(2), pages 413-452, February.
    16. Per A. Mykland & Lan Zhang, 2009. "Inference for Continuous Semimartingales Observed at High Frequency," Econometrica, Econometric Society, vol. 77(5), pages 1403-1445, September.
    17. Carr, Peter & Wu, Liuren, 2007. "Stochastic skew in currency options," Journal of Financial Economics, Elsevier, vol. 86(1), pages 213-247, October.
    18. Blundell,Richard & Newey,Whitney & Persson,Torsten (ed.), 2007. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521692106.
    19. Barndorff-Nielsen, Ole E. & Shephard, Neil, 2006. "Impact of jumps on returns and realised variances: econometric analysis of time-deformed Levy processes," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 217-252.
    20. Almut E. D. Veraart, 2008. "Impact of time–inhomogeneous jumps and leverage type effects on returns and realised variances," CREATES Research Papers 2008-57, Department of Economics and Business Economics, Aarhus University.
    21. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    22. Todorov, Viktor, 2011. "Econometric analysis of jump-driven stochastic volatility models," Journal of Econometrics, Elsevier, vol. 160(1), pages 12-21, January.
    23. Gareth O. Roberts & Omiros Papaspiliopoulos & Petros Dellaportas, 2004. "Bayesian inference for non‐Gaussian Ornstein–Uhlenbeck stochastic volatility processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(2), pages 369-393, May.
    24. Bollerslev, Tim & Zhou, Hao, 2002. "Estimating stochastic volatility diffusion using conditional moments of integrated volatility," Journal of Econometrics, Elsevier, vol. 109(1), pages 33-65, July.
    25. repec:oxf:wpaper:264 is not listed on IDEAS
    26. Yu, Jun, 2005. "On leverage in a stochastic volatility model," Journal of Econometrics, Elsevier, vol. 127(2), pages 165-178, August.
    27. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
    28. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise," Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
    29. Vetter, Mathias & Podolskij, Mark, 2006. "Estimation of Volatility Functionals in the Simultaneous Presence of Microstructure Noise and Jumps," Technical Reports 2006,51, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    30. Gourieroux, Christian & Jasiak, Joann, 2006. "Multivariate Jacobi process with application to smooth transitions," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 475-505.
    31. Elisa Nicolato & Emmanouil Venardos, 2003. "Option Pricing in Stochastic Volatility Models of the Ornstein‐Uhlenbeck type," Mathematical Finance, Wiley Blackwell, vol. 13(4), pages 445-466, October.
    32. Kristian Stegenborg Larsen & Michael Sørensen, 2007. "Diffusion Models For Exchange Rates In A Target Zone," Mathematical Finance, Wiley Blackwell, vol. 17(2), pages 285-306, April.
    33. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    34. Blundell,Richard & Newey,Whitney K. & Persson,Torsten (ed.), 2007. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521871532.
    35. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    36. Gourieroux, C. & Jasiak, J. & Sufana, R., 2009. "The Wishart Autoregressive process of multivariate stochastic volatility," Journal of Econometrics, Elsevier, vol. 150(2), pages 167-181, June.
    37. Bollerslev, Tim & Zhou, Hao, 2006. "Volatility puzzles: a simple framework for gauging return-volatility regressions," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 123-150.
    38. Marc Romano & Nizar Touzi, 1997. "Contingent Claims and Market Completeness in a Stochastic Volatility Model," Mathematical Finance, Wiley Blackwell, vol. 7(4), pages 399-412, October.
    39. Mark Broadie & Özgür Kaya, 2006. "Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes," Operations Research, INFORMS, vol. 54(2), pages 217-231, April.
    40. Ole E. Barndorff-Nielsen & Almut E. D. Veraart, 2009. "Stochastic volatility of volatility in continuous time," CREATES Research Papers 2009-25, Department of Economics and Business Economics, Aarhus University.
    41. Hubalek, Friedrich & Sgarra, Carlo, 2009. "On the Esscher transforms and other equivalent martingale measures for Barndorff-Nielsen and Shephard stochastic volatility models with jumps," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2137-2157, July.
    42. Harvey, Andrew C & Shephard, Neil, 1996. "Estimation of an Asymmetric Stochastic Volatility Model for Asset Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 429-434, October.
    43. Blundell,Richard & Newey,Whitney K. & Persson,Torsten (ed.), 2007. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521692090.
    44. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frederik Herzberg, 2013. "First steps towards an equilibrium theory for Lévy financial markets," Annals of Finance, Springer, vol. 9(3), pages 543-572, August.
    2. René Aïd & Luciano Campi & Nicolas Langrené & Huyên Pham, 2012. "A probabilistic numerical method for optimal multiple switching problems in high dimension," Working Papers hal-00747229, HAL.
    3. Sebastien Valeyre & Denis Grebenkov & Sofiane Aboura & Qian Liu, 2013. "The reactive volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1697-1706, November.
    4. Hoang Nguyen & Trong-Nghia Nguyen & Minh-Ngoc Tran, 2023. "A dynamic leverage stochastic volatility model," Applied Economics Letters, Taylor & Francis Journals, vol. 30(1), pages 97-102, January.
    5. Almut Veraart, 2011. "How precise is the finite sample approximation of the asymptotic distribution of realised variation measures in the presence of jumps?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(3), pages 253-291, September.
    6. Curato, Imma Valentina, 2019. "Estimation of the stochastic leverage effect using the Fourier transform method," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3207-3238.
    7. Ting, Sai Hung Marten & Ewald, Christian-Oliver & Wang, Wen-Kai, 2013. "On the investment–uncertainty relationship in a real option model with stochastic volatility," Mathematical Social Sciences, Elsevier, vol. 66(1), pages 22-32.
    8. Imma Valentina Curato & Simona Sanfelici, 2019. "Stochastic leverage effect in high-frequency data: a Fourier based analysis," Papers 1910.06660, arXiv.org, revised Mar 2021.
    9. Yacine Aït-Sahalia & Jianqing Fan & Roger J. A. Laeven & Christina Dan Wang & Xiye Yang, 2017. "Estimation of the Continuous and Discontinuous Leverage Effects," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1744-1758, October.
    10. Aboura, Sofiane & Chevallier, Julien, 2018. "Tail risk and the return-volatility relation," Research in International Business and Finance, Elsevier, vol. 46(C), pages 16-29.
    11. Aïd, René & Campi, Luciano & Langrené, Nicolas & Pham, Huyên, 2014. "A probabilistic numerical method for optimal multiple switching problems in high dimension," LSE Research Online Documents on Economics 63011, London School of Economics and Political Science, LSE Library.
    12. Giacomo Toscano & Maria Cristina Recchioni, 2022. "Bias-optimal vol-of-vol estimation: the role of window overlapping," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 45(1), pages 137-185, June.
    13. Ren'e Aid & Luciano Campi & Nicolas Langren'e & Huy^en Pham, 2012. "A probabilistic numerical method for optimal multiple switching problem and application to investments in electricity generation," Papers 1210.8175, arXiv.org.
    14. Curato, Imma Valentina & Sanfelici, Simona, 2022. "Stochastic leverage effect in high-frequency data: a Fourier based analysis," Econometrics and Statistics, Elsevier, vol. 23(C), pages 53-82.
    15. Carles Bret'o, 2013. "On idiosyncratic stochasticity of financial leverage effects," Papers 1312.5496, arXiv.org.
    16. Marie Roy de Chaumaray, 2018. "Moderate deviations for parameters estimation in a geometrically ergodic Heston process," Statistical Inference for Stochastic Processes, Springer, vol. 21(3), pages 553-567, October.
    17. Ole E. Barndorff-Nielsen & Almut E. D. Veraart, 2009. "Stochastic volatility of volatility in continuous time," CREATES Research Papers 2009-25, Department of Economics and Business Economics, Aarhus University.
    18. Bretó, Carles, 2014. "On idiosyncratic stochasticity of financial leverage effects," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 20-26.
    19. Alexander Schnurr, 2015. "An Ordinal Pattern Approach to Detect and to Model Leverage Effects and Dependence Structures Between Financial Time Series," Papers 1502.07321, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ole E. Barndorff-Nielsen & Almut E. D. Veraart, 2009. "Stochastic volatility of volatility in continuous time," CREATES Research Papers 2009-25, Department of Economics and Business Economics, Aarhus University.
    2. Almut E. D. Veraart, 2008. "Impact of time–inhomogeneous jumps and leverage type effects on returns and realised variances," CREATES Research Papers 2008-57, Department of Economics and Business Economics, Aarhus University.
    3. Almut Veraart, 2011. "How precise is the finite sample approximation of the asymptotic distribution of realised variation measures in the presence of jumps?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(3), pages 253-291, September.
    4. Christensen, Kim & Oomen, Roel C.A. & Podolskij, Mark, 2014. "Fact or friction: Jumps at ultra high frequency," Journal of Financial Economics, Elsevier, vol. 114(3), pages 576-599.
    5. Federico M. Bandi & Roberto Reno, 2009. "Nonparametric Stochastic Volatility," Global COE Hi-Stat Discussion Paper Series gd08-035, Institute of Economic Research, Hitotsubashi University.
    6. Christensen, Kim & Kinnebrock, Silja & Podolskij, Mark, 2010. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," Journal of Econometrics, Elsevier, vol. 159(1), pages 116-133, November.
    7. Christensen, K. & Podolskij, M. & Thamrongrat, N. & Veliyev, B., 2017. "Inference from high-frequency data: A subsampling approach," Journal of Econometrics, Elsevier, vol. 197(2), pages 245-272.
    8. Qiang Liu & Zhi Liu & Chuanhai Zhang, 2020. "Heteroscedasticity test of high-frequency data with jumps and microstructure noise," Papers 2010.07659, arXiv.org.
    9. Chaboud, Alain P. & Chiquoine, Benjamin & Hjalmarsson, Erik & Loretan, Mico, 2010. "Frequency of observation and the estimation of integrated volatility in deep and liquid financial markets," Journal of Empirical Finance, Elsevier, vol. 17(2), pages 212-240, March.
    10. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    11. Ysusi Carla, 2007. "Multipower Variation Under Market Microstructure Effects," Working Papers 2007-13, Banco de México.
    12. Christensen, Kim & Oomen, Roel & Podolskij, Mark, 2010. "Realised quantile-based estimation of the integrated variance," Journal of Econometrics, Elsevier, vol. 159(1), pages 74-98, November.
    13. Ole E. Barndorff-Nielsen & Silja Kinnebrock & Neil Shephard, 2008. "Measuring downside risk - realised semivariance," OFRC Working Papers Series 2008fe01, Oxford Financial Research Centre.
    14. Neil Shephard & Silja Kinnebrock & Ole E. Barndorff-Neilsen, 2008. "Measuring downside risk - realised semivariance," Economics Series Working Papers 382, University of Oxford, Department of Economics.
    15. Neil Shephard & Kevin Sheppard, 2010. "Realising the future: forecasting with high-frequency-based volatility (HEAVY) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 197-231.
    16. Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2012. "Asymmetry and Long Memory in Volatility Modeling," Journal of Financial Econometrics, Oxford University Press, vol. 10(3), pages 495-512, June.
    17. Barndorff-Nielsen, Ole E. & Hansen, Peter Reinhard & Lunde, Asger & Shephard, Neil, 2011. "Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," Journal of Econometrics, Elsevier, vol. 162(2), pages 149-169, June.
    18. Christensen, Kim & Thyrsgaard, Martin & Veliyev, Bezirgen, 2019. "The realized empirical distribution function of stochastic variance with application to goodness-of-fit testing," Journal of Econometrics, Elsevier, vol. 212(2), pages 556-583.
    19. Torben G. Andersen & Viktor Todorov, 2009. "Realized Volatility and Multipower Variation," CREATES Research Papers 2009-49, Department of Economics and Business Economics, Aarhus University.
    20. Maheu, John M. & McCurdy, Thomas H., 2011. "Do high-frequency measures of volatility improve forecasts of return distributions?," Journal of Econometrics, Elsevier, vol. 160(1), pages 69-76, January.

    More about this item

    Keywords

    Stochastic volatility; Volatility of volatility; Stochastic correlation; Leverage effect; Jacobi process; Ornstein–Uhlenbeck process; Square root diffusion; Lévy process; Heston model; Barndorff-Nielsen & Shephard model; C1; C5; G0; G1;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • G0 - Financial Economics - - General
    • G1 - Financial Economics - - General Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:annfin:v:8:y:2012:i:2:p:205-233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.