IDEAS home Printed from https://ideas.repec.org/p/tiu/tiucen/53bef46d-6511-4d09-9018-d6192f9d29af.html
   My bibliography  Save this paper

On the Dangers of Modelling through Continuous Distributions : A Bayesian Perspective

Author

Listed:
  • Fernández, C.
  • Steel, M.F.J.

    (Tilburg University, Center For Economic Research)

Abstract

We point out that Bayesian inference on the basis of a given sample is not always possible with continuous sampling models, even under a proper prior. The reason for this paradoxical situation is explained, and linked to the fact that any dataset consisting of point observations has zero probability under a continuous sampling distribution. A number of examples, both with proper and improper priors, highlight the issues involved. A solution is proposed through the use of set observations, which take into account the precision with which the data were recorded. Use of a Gibbs sampler makes the solution practically feasible. The case of independent sampling from (possibly skewed) scale mixtures of Normals is analysed in detail for a location-scale model with a commonly used noninformative prior. For Student-t sampling with unrestricted degrees of freedom the usual inference, based on point observations, is shown to be precluded whenever the sample contains repeated observations. We show that Bayesian inference based on set observations, however, is possible and illustrate this by an application to a skewed dataset of stock returns.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Fernández, C. & Steel, M.F.J., 1997. "On the Dangers of Modelling through Continuous Distributions : A Bayesian Perspective," Discussion Paper 1997-05, Tilburg University, Center for Economic Research.
  • Handle: RePEc:tiu:tiucen:53bef46d-6511-4d09-9018-d6192f9d29af
    as

    Download full text from publisher

    File URL: https://pure.uvt.nl/ws/portalfiles/portal/526596/5.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Eric Jacquier & Nicholas G. Polson & Peter Rossi, "undated". "Stochastic Volatility: Univariate and Multivariate Extensions," Rodney L. White Center for Financial Research Working Papers 19-95, Wharton School Rodney L. White Center for Financial Research.
    2. Fernández, C. & Steel, M.F.J., 1995. "Reference priors in non-normal location problems," Discussion Paper 1995-91, Tilburg University, Center for Economic Research.
    3. Fernández, C. & Steel, M.F.J., 1996. "On Bayesian Inference under Sampling from Scale Mixtures of Normals," Discussion Paper 1996-02, Tilburg University, Center for Economic Research.
    4. repec:bla:jfinan:v:43:y:1988:i:4:p:841-65 is not listed on IDEAS
    5. MOUCHART, Michel, 1976. "A note on Bayes theorem," LIDAM Reprints CORE 253, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Geweke, J, 1993. "Bayesian Treatment of the Independent Student- t Linear Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 19-40, Suppl. De.
    7. Hausman, Jerry A. & Lo, Andrew W. & MacKinlay, A. Craig, 1992. "An ordered probit analysis of transaction stock prices," Journal of Financial Economics, Elsevier, vol. 31(3), pages 319-379, June.
    8. Fernández, C. & Steel, M.F.J., 1996. "On Bayesian Modelling of Fat Tails and Skewness," Other publications TiSEM 0991c197-c9e8-4904-8119-3, Tilburg University, School of Economics and Management.
    9. Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(2), pages 247-264.
    10. Roberts, G. O. & Smith, A. F. M., 1994. "Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms," Stochastic Processes and their Applications, Elsevier, vol. 49(2), pages 207-216, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cristiano Villa, 2017. "Bayesian estimation of the threshold of a generalised pareto distribution for heavy-tailed observations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 95-118, March.
    2. Vallejos, Catalina A. & Steel, Mark F.J., 2017. "Incorporating unobserved heterogeneity in Weibull survival models: A Bayesian approach," Econometrics and Statistics, Elsevier, vol. 3(C), pages 73-88.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernández, Carmen & Steel, Mark F.J., 2000. "Bayesian Regression Analysis With Scale Mixtures Of Normals," Econometric Theory, Cambridge University Press, vol. 16(1), pages 80-101, February.
    2. Fernández, C. & Steel, M.F.J., 1996. "On Bayesian Inference under Sampling from Scale Mixtures of Normals," Other publications TiSEM 10be2f67-1679-4828-bba6-7, Tilburg University, School of Economics and Management.
    3. Fernández, C. & Steel, M.F.J., 1996. "On Bayesian Modelling of Fat Tails and Skewness," Other publications TiSEM 0991c197-c9e8-4904-8119-3, Tilburg University, School of Economics and Management.
    4. Efthymios G. Tsionas, 2006. "Inference in dynamic stochastic frontier models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 669-676, July.
    5. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
    6. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range‐Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, June.
    7. Jun Yu & Renate Meyer, 2006. "Multivariate Stochastic Volatility Models: Bayesian Estimation and Model Comparison," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 361-384.
    8. Eric Jacquier & Nicholas G. Polson & Peter Rossi, "undated". "Stochastic Volatility: Univariate and Multivariate Extensions," Rodney L. White Center for Financial Research Working Papers 19-95, Wharton School Rodney L. White Center for Financial Research.
    9. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2001. "High- and Low-Frequency Exchange Rate Volatility Dynamics: Range-Based Estimation of Stochastic Volatility Models," NBER Working Papers 8162, National Bureau of Economic Research, Inc.
    10. Danielsson, Jon, 1998. "Multivariate stochastic volatility models: Estimation and a comparison with VGARCH models," Journal of Empirical Finance, Elsevier, vol. 5(2), pages 155-173, June.
    11. Luc Bauwens & Charles S. Bos & Herman K. van Dijk, 1999. "Adaptive Polar Sampling with an Application to a Bayes Measure of Value-at-Risk," Tinbergen Institute Discussion Papers 99-082/4, Tinbergen Institute.
    12. Mikhail Chernov & Eric Ghysels, 1998. "What Data Should Be Used to Price Options?," CIRANO Working Papers 98s-22, CIRANO.
    13. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    14. Philipp Otto & Osman Dou{g}an & Suleyman Tac{s}p{i}nar & Wolfgang Schmid & Anil K. Bera, 2023. "Spatial and Spatiotemporal Volatility Models: A Review," Papers 2308.13061, arXiv.org.
    15. Ishihara, Tsunehiro & Omori, Yasuhiro, 2012. "Efficient Bayesian estimation of a multivariate stochastic volatility model with cross leverage and heavy-tailed errors," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3674-3689.
    16. Sucarrat, Genaro, 2010. "The power log-GARCH model," UC3M Working papers. Economics we1013, Universidad Carlos III de Madrid. Departamento de Economía.
    17. Ghysels, E. & Jasiak, J., 1994. "Stochastic Volatility and time Deformation: an Application of trading Volume and Leverage Effects," Cahiers de recherche 9403, Universite de Montreal, Departement de sciences economiques.
    18. Alexander Tsyplakov, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models (in Russian)," Quantile, Quantile, issue 8, pages 69-122, July.
    19. John Geweke & Michael P. Keane, 1997. "Mixture of normals probit models," Staff Report 237, Federal Reserve Bank of Minneapolis.
    20. Carmen Fernández & Mark Steel, 1998. "Reference priors for non-Normal two-sample problems," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 7(1), pages 179-205, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tiu:tiucen:53bef46d-6511-4d09-9018-d6192f9d29af. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richard Broekman (email available below). General contact details of provider: http://center.uvt.nl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.