IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v33y2017i4p394-408.html
   My bibliography  Save this article

Maximum likelihood estimation for stochastic volatility in mean models with heavy‐tailed distributions

Author

Listed:
  • Carlos A. Abanto‐Valle
  • Roland Langrock
  • Ming‐Hui Chen
  • Michel V. Cardoso

Abstract

In this article, we introduce a likelihood‐based estimation method for the stochastic volatility in mean (SVM) model with scale mixtures of normal (SMN) distributions. Our estimation method is based on the fact that the powerful hidden Markov model (HMM) machinery can be applied in order to evaluate an arbitrarily accurate approximation of the likelihood of an SVM model with SMN distributions. Likelihood‐based estimation of the parameters of stochastic volatility models, in general, and SVM models with SMN distributions, in particular, is usually regarded as challenging as the likelihood is a high‐dimensional multiple integral. However, the HMM approximation, which is very easy to implement, makes numerical maximum of the likelihood feasible and leads to simple formulae for forecast distributions, for computing appropriately defined residuals, and for decoding, that is, estimating the volatility of the process. Copyright © 2017 John Wiley & Sons, Ltd.

Suggested Citation

  • Carlos A. Abanto‐Valle & Roland Langrock & Ming‐Hui Chen & Michel V. Cardoso, 2017. "Maximum likelihood estimation for stochastic volatility in mean models with heavy‐tailed distributions," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(4), pages 394-408, August.
  • Handle: RePEc:wly:apsmbi:v:33:y:2017:i:4:p:394-408
    DOI: 10.1002/asmb.2246
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.2246
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.2246?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Abanto-Valle, C.A. & Bandyopadhyay, D. & Lachos, V.H. & Enriquez, I., 2010. "Robust Bayesian analysis of heavy-tailed stochastic volatility models using scale mixtures of normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2883-2898, December.
    2. Bulla, Jan & Bulla, Ingo, 2006. "Stylized facts of financial time series and hidden semi-Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2192-2209, December.
    3. Bulla, Jan, 2006. "Application of Hidden Markov Models and Hidden Semi-Markov Models to Financial Time Series," MPRA Paper 7675, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abanto-Valle, Carlos A. & Rodríguez, Gabriel & Garrafa-Aragón, Hernán B., 2021. "Stochastic Volatility in Mean: Empirical evidence from Latin-American stock markets using Hamiltonian Monte Carlo and Riemann Manifold HMC methods," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 272-286.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Milan Kumar Das & Anindya Goswami, 2019. "Testing of binary regime switching models using squeeze duration analysis," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-20, March.
    2. Wang, Shixuan & Gupta, Rangan & Zhang, Yue-Jun, 2021. "Bear, Bull, Sidewalk, and Crash: The Evolution of the US Stock Market Using Over a Century of Daily Data," Finance Research Letters, Elsevier, vol. 43(C).
    3. Vlad Stefan Barbu & Guglielmo D’Amico & Thomas Gkelsinis, 2021. "Sequential Interval Reliability for Discrete-Time Homogeneous Semi-Markov Repairable Systems," Mathematics, MDPI, vol. 9(16), pages 1-18, August.
    4. Holzmann, Hajo & Schwaiger, Florian, 2016. "Testing for the number of states in hidden Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 318-330.
    5. Laurie Davies & Walter Kraemer, 2016. "Stylized Facts and Simulating Long Range Financial Data," CESifo Working Paper Series 5796, CESifo.
    6. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    7. Andrea Arfè & Stefano Peluso & Pietro Muliere, 2021. "The semi-Markov beta-Stacy process: a Bayesian non-parametric prior for semi-Markov processes," Statistical Inference for Stochastic Processes, Springer, vol. 24(1), pages 1-15, April.
    8. Maruotti, Antonello & Petrella, Lea & Sposito, Luca, 2021. "Hidden semi-Markov-switching quantile regression for time series," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    9. Guglielmo D'Amico & Filippo Petroni, 2020. "A micro-to-macro approach to returns, volumes and waiting times," Papers 2007.06262, arXiv.org.
    10. Milan Kumar Das & Anindya Goswami & Sharan Rajani, 2019. "Inference of Binary Regime Models with Jump Discontinuities," Papers 1910.10606, arXiv.org, revised Mar 2022.
    11. Kaihua Deng, 2018. "Another Look at Large-Cap Stock Return Comovement: A Semi-Markov-Switching Approach," Computational Economics, Springer;Society for Computational Economics, vol. 51(2), pages 227-262, February.
    12. Gallo, Giampiero M. & Otranto, Edoardo, 2008. "Volatility spillovers, interdependence and comovements: A Markov Switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3011-3026, February.
    13. Luca De Angelis & Leonard J. Paas, 2013. "A dynamic analysis of stock markets using a hidden Markov model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(8), pages 1682-1700, August.
    14. Elizabeth Fons & Paula Dawson & Jeffrey Yau & Xiao-jun Zeng & John Keane, 2019. "A novel dynamic asset allocation system using Feature Saliency Hidden Markov models for smart beta investing," Papers 1902.10849, arXiv.org.
    15. Milan Kumar Das & Anindya Goswami, 2018. "Testing of Binary Regime Switching Models using Squeeze Duration Analysis," Papers 1807.04393, arXiv.org, revised Aug 2018.
    16. Apergis, Nicholas & Gozgor, Giray & Lau, Chi Keung Marco & Wang, Shixuan, 2019. "Decoding the Australian electricity market: New evidence from three-regime hidden semi-Markov model," Energy Economics, Elsevier, vol. 78(C), pages 129-142.
    17. Haas Markus, 2010. "Skew-Normal Mixture and Markov-Switching GARCH Processes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(4), pages 1-56, September.
    18. Elliott, Robert & Limnios, Nikolaos & Swishchuk, Anatoliy, 2013. "Filtering hidden semi-Markov chains," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 2007-2014.
    19. Haas, Markus, 2009. "Persistence in volatility, conditional kurtosis, and the Taylor property in absolute value GARCH processes," Statistics & Probability Letters, Elsevier, vol. 79(15), pages 1674-1683, August.
    20. Anindya Goswami & Omkar Manjarekar & Anjana R, 2018. "Option Pricing in a Regime Switching Jump Diffusion Model," Papers 1811.11379, arXiv.org, revised Oct 2019.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:33:y:2017:i:4:p:394-408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.