IDEAS home Printed from https://ideas.repec.org/a/eee/pacfin/v87y2024ics0927538x24002610.html
   My bibliography  Save this article

Navigating the “twin titans” of global manufacturing: The impact of US and China on industrial production forecasting in G20 nations

Author

Listed:
  • Kumar, Utkarsh
  • Ahmad, Wasim

Abstract

This study shows the influence of the US and China, the world's manufacturing powerhouses, over the performance of the manufacturing sector of G20 countries from the lens of forecasting. Building upon the Bayesian Additive Regression Tree (BART) with Vector autoregression (VAR) and Stochastic Volatility (SV) augmentations, the study forecasts the IPI (Industrial Production Index) of G20 countries and checks whether the addition of US or China data results in any superior forecast. Initial findings highlight a significant interconnectedness between the IPIs of the US and China and those of G20 nations. The empirical findings suggest an increase in the forecast accuracy of many member nations' IPI with the addition of US and China's data for both point and density forecasts. Furthermore, US data offer an overall advantage in the forecast, particularly for developed economies. China's influence is primarily observed in nations where it maintains robust trade relationships. The study provides valuable insights into the dynamics of global manufacturing. It highlights the importance of considering the role of major players such as the US and China when making predictions about future trends.

Suggested Citation

  • Kumar, Utkarsh & Ahmad, Wasim, 2024. "Navigating the “twin titans” of global manufacturing: The impact of US and China on industrial production forecasting in G20 nations," Pacific-Basin Finance Journal, Elsevier, vol. 87(C).
  • Handle: RePEc:eee:pacfin:v:87:y:2024:i:c:s0927538x24002610
    DOI: 10.1016/j.pacfin.2024.102509
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927538X24002610
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.pacfin.2024.102509?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Litterman, Robert B & Weiss, Laurence M, 1985. "Money, Real Interest Rates, and Output: A Reinterpretation of Postwar U.S. Data," Econometrica, Econometric Society, vol. 53(1), pages 129-156, January.
    2. Carluccio Bianchi & Alessandro Carta & Dean Fantazzini & Maria Elena De Giuli & Mario Maggi, 2010. "A copula-VAR-X approach for industrial production modelling and forecasting," Applied Economics, Taylor & Francis Journals, vol. 42(25), pages 3267-3277.
    3. De Bock, Reinout & de Carvalho Filho, Irineu, 2015. "The behavior of currencies during risk-off episodes," Journal of International Money and Finance, Elsevier, vol. 53(C), pages 218-234.
    4. Simpson, Paul W & Osborn, Denise R & Sensier, Marianne, 2001. "Forecasting UK Industrial Production over the Business Cycle," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(6), pages 405-424, September.
    5. Chen, Qianying & Filardo, Andrew & He, Dong & Zhu, Feng, 2016. "Financial crisis, US unconventional monetary policy and international spillovers," Journal of International Money and Finance, Elsevier, vol. 67(C), pages 62-81.
    6. Nam, Deokwoo & Wang, Jian, 2015. "The effects of surprise and anticipated technology changes on international relative prices and trade," Journal of International Economics, Elsevier, vol. 97(1), pages 162-177.
    7. Giancarlo Bruno & Claudio Lupi, 2004. "Forecasting industrial production and the early detection of turning points," Empirical Economics, Springer, vol. 29(3), pages 647-671, September.
    8. Stefan Avdjiev & Valentina Bruno & Catherine Koch & Hyun Song Shin, 2019. "The Dollar Exchange Rate as a Global Risk Factor: Evidence from Investment," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 67(1), pages 151-173, March.
    9. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    10. Hall, Stephen G. & Tavlas, George S. & Wang, Yongli, 2023. "Drivers and spillover effects of inflation: The United States, the euro area, and the United Kingdom☆," Journal of International Money and Finance, Elsevier, vol. 131(C).
    11. Huber, Florian & Koop, Gary & Onorante, Luca & Pfarrhofer, Michael & Schreiner, Josef, 2023. "Nowcasting in a pandemic using non-parametric mixed frequency VARs," Journal of Econometrics, Elsevier, vol. 232(1), pages 52-69.
    12. Cashin, Paul & Mohaddes, Kamiar & Raissi, Mehdi, 2017. "China's slowdown and global financial market volatility: Is world growth losing out?," Emerging Markets Review, Elsevier, vol. 31(C), pages 164-175.
    13. Clarida, Richard H. & Sarno, Lucio & Taylor, Mark P. & Valente, Giorgio, 2003. "The out-of-sample success of term structure models as exchange rate predictors: a step beyond," Journal of International Economics, Elsevier, vol. 60(1), pages 61-83, May.
    14. Lyu, Yifei & Nie, Jun & Yang, Shu-Kuei X., 2021. "Forecasting US economic growth in downturns using cross-country data," Economics Letters, Elsevier, vol. 198(C).
    15. Diebold, Francis X & Rudebusch, Glenn D, 1989. "Scoring the Leading Indicators," The Journal of Business, University of Chicago Press, vol. 62(3), pages 369-391, July.
    16. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    17. Alessandro Rebucci & Ambrogio Cesa-Bianchi & M. Hashem Pesaran & TengTeng Xu, 2012. "China's Emergence in the World Economy and Business Cycles in Latin America," Economía Journal, The Latin American and Caribbean Economic Association - LACEA, vol. 0(Spring 20), pages 1-75, January.
    18. Norman R. Swanson & Halbert White, 1997. "A Model Selection Approach To Real-Time Macroeconomic Forecasting Using Linear Models And Artificial Neural Networks," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 540-550, November.
    19. Knut Are Aastveit & Hilde C. Bjørnland & Leif Anders Thorsrud, 2015. "What Drives Oil Prices? Emerging Versus Developed Economies," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(7), pages 1013-1028, November.
    20. Ilzetzki, Ethan & Jin, Keyu, 2021. "The puzzling change in the international transmission of U.S. macroeconomic policy shocks," Journal of International Economics, Elsevier, vol. 130(C).
    21. Mr. Arvind Subramanian & Ms. Prachi Mishra & Aaditya Mattoo, 2012. "Spillover Effects of Exchange Rates: A Study of the Renminbi," IMF Working Papers 2012/088, International Monetary Fund.
    22. repec:ulb:ulbeco:2013/13388 is not listed on IDEAS
    23. Florian Huber & Gary Koop & Luca Onorante, 2021. "Inducing Sparsity and Shrinkage in Time-Varying Parameter Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 669-683, July.
    24. Schwert, G William, 1990. "Stock Returns and Real Activity: A Century of Evidence," Journal of Finance, American Finance Association, vol. 45(4), pages 1237-1257, September.
    25. Necmettin Tarhan Feyzioglu & Luke Byrne Willard, 2008. "Does China have Inflationary Effects on the USA and Japan?," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 16(1), pages 1-16, January.
    26. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    27. Azad, Nahiyan Faisal & Serletis, Apostolos, 2022. "Spillovers of U.S. monetary policy uncertainty on inflation targeting emerging economies," Emerging Markets Review, Elsevier, vol. 51(PA).
    28. Georgiadis, Georgios & Schumann, Ben, 2021. "Dominant-currency pricing and the global output spillovers from US dollar appreciation," Journal of International Economics, Elsevier, vol. 133(C).
    29. Kim, Bong-Han & Kim, Hyeongwoo & Lee, Bong-Soo, 2015. "Spillover effects of the U.S. financial crisis on financial markets in emerging Asian countries," International Review of Economics & Finance, Elsevier, vol. 39(C), pages 192-210.
    30. Warwick McKibbin & Roshen Fernando, 2021. "The Global Macroeconomic Impacts of COVID-19: Seven Scenarios," Asian Economic Papers, MIT Press, vol. 20(2), pages 1-30, Summer.
    31. Dooley, Michael & Hutchison, Michael, 2009. "Transmission of the U.S. subprime crisis to emerging markets: Evidence on the decoupling-recoupling hypothesis," Journal of International Money and Finance, Elsevier, vol. 28(8), pages 1331-1349, December.
    32. Todd E. Clark, 2011. "Real-Time Density Forecasts From Bayesian Vector Autoregressions With Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 327-341, July.
    33. Bernanke, Ben S. & Boivin, Jean, 2003. "Monetary policy in a data-rich environment," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 525-546, April.
    34. Eicher, Theo S. & Kuenzel, David J. & Papageorgiou, Chris & Christofides, Charis, 2019. "Forecasts in times of crises," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1143-1159.
    35. Maurice Obstfeld & Kenneth S. Rogoff, 2009. "Global imbalances and the financial crisis: products of common causes," Proceedings, Federal Reserve Bank of San Francisco, issue Oct, pages 131-172.
    36. Chang-Jin Kim & Charles R. Nelson, 1998. "Business Cycle Turning Points, A New Coincident Index, And Tests Of Duration Dependence Based On A Dynamic Factor Model With Regime Switching," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 188-201, May.
    37. Francesco Battaglia & Livio Fenga, 2003. "Forecasting composite indicators with anticipated information: an application to the industrial production index," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(3), pages 279-290, July.
    38. Anna Sznajderska, 2019. "The role of China in the world economy: evidence from a global VAR model," Applied Economics, Taylor & Francis Journals, vol. 51(15), pages 1574-1587, March.
    39. Barry Naughton, 2007. "The Chinese Economy: Transitions and Growth," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262640643, December.
    40. Kose,Ayhan & Lakatos,Csilla & Ohnsorge,Franziska Lieselotte & Stocker,Marc, 2017. "The global role of the U.S. economy: linkages, policies and spillovers," Policy Research Working Paper Series 7962, The World Bank.
    41. Baum, Christopher F. & Kurov, Alexander & Wolfe, Marketa Halova, 2015. "What do Chinese macro announcements tell us about the world economy?," Journal of International Money and Finance, Elsevier, vol. 59(C), pages 100-122.
    42. Valentina Aprigliano, 2020. "A large Bayesian VAR with a block‐specific shrinkage: A forecasting application for Italian industrial production," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1291-1304, December.
    43. James H. Stock & Mark W. Watson, 2010. "Indicators for Dating Business Cycles: Cross-History Selection and Comparisons," American Economic Review, American Economic Association, vol. 100(2), pages 16-19, May.
    44. Davide Furceri & João Tovar Jalles & Aleksandra Zdzienicka, 2017. "China Spillovers: New Evidence from Time-Varying Estimates," Open Economies Review, Springer, vol. 28(3), pages 413-429, July.
    45. Kastner, Gregor & Frühwirth-Schnatter, Sylvia, 2014. "Ancillarity-sufficiency interweaving strategy (ASIS) for boosting MCMC estimation of stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 408-423.
    46. Dani Rodrik, 2018. "What Do Trade Agreements Really Do?," Journal of Economic Perspectives, American Economic Association, vol. 32(2), pages 73-90, Spring.
    47. Artis, Michael J & Kontolemis, Zenon G & Osborn, Denise R, 1997. "Business Cycles for G7 and European Countries," The Journal of Business, University of Chicago Press, vol. 70(2), pages 249-279, April.
    48. Mr. Ashvin Ahuja & Mr. Malhar S Nabar, 2012. "Investment-Led Growth in China: Global Spillovers," IMF Working Papers 2012/267, International Monetary Fund.
    49. Altug, Sumru & Tan, Barış & Gencer, Gözde, 2012. "Cyclical dynamics of industrial production and employment: Markov chain-based estimates and tests," Journal of Economic Dynamics and Control, Elsevier, vol. 36(10), pages 1534-1550.
    50. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    51. Bodo, Giorgio & Signorini, Luigi Federico, 1987. "Short-term forecasting of the industrial production index," International Journal of Forecasting, Elsevier, vol. 3(2), pages 245-259.
    52. Gatti, Roberta & Lederman, Daniel & Islam, Asif M. & Nguyen, Ha & Lotfi, Rana & Emam Mousa, Mennatallah, 2024. "Data transparency and GDP growth forecast errors," Journal of International Money and Finance, Elsevier, vol. 140(C).
    53. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    54. Ewing, Bradley T. & Thompson, Mark A., 2007. "Dynamic cyclical comovements of oil prices with industrial production, consumer prices, unemployment, and stock prices," Energy Policy, Elsevier, vol. 35(11), pages 5535-5540, November.
    55. Carriero, Andrea & Clark, Todd E. & Marcellino, Massimiliano, 2019. "Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors," Journal of Econometrics, Elsevier, vol. 212(1), pages 137-154.
    56. Arora, Vivek & Vamvakidis, Athanasios, 2006. "The Impact of U.S. Economic Growth on the Rest of the World: How Much Does It Matter?," Journal of Economic Integration, Center for Economic Integration, Sejong University, vol. 21, pages 21-39.
    57. Shi, Yujie, 2022. "What influences stock market co-movements between China and its Asia-Pacific trading partners after the Global Financial Crisis?," Pacific-Basin Finance Journal, Elsevier, vol. 72(C).
    58. Carlomagno, Guillermo & Albagli, Elías, 2022. "Trade wars and asset prices," Journal of International Money and Finance, Elsevier, vol. 124(C).
    59. Steven B. Kamin & Mario Marazzi & John W. Schindler, 2006. "The Impact of Chinese Exports on Global Import Prices," Review of International Economics, Wiley Blackwell, vol. 14(2), pages 179-201, May.
    60. Gregory Whitten & Xiaoyi Dai & Simon Fan & Yu Pang, 2020. "Do political relations affect international trade? Evidence from China’s twelve trading partners," Journal of Shipping and Trade, Springer, vol. 5(1), pages 1-24, December.
    61. Mr. Zhongxia Zhang, 2021. "Stock Returns and Inflation Redux: An Explanation from Monetary Policy in Advanced and Emerging Markets," IMF Working Papers 2021/219, International Monetary Fund.
    62. Giuseppe Parigi & Roberto Golinelli, 2007. "The use of monthly indicators to forecast quarterly GDP in the short run: an application to the G7 countries," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(2), pages 77-94.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    2. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    3. Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2023. "Tail Forecasting With Multivariate Bayesian Additive Regression Trees," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 979-1022, August.
    4. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino & Elmar Mertens, 2024. "Addressing COVID-19 Outliers in BVARs with Stochastic Volatility," The Review of Economics and Statistics, MIT Press, vol. 106(5), pages 1403-1417, September.
    5. Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
    6. Tsionas, Mike G. & Izzeldin, Marwan & Trapani, Lorenzo, 2022. "Estimation of large dimensional time varying VARs using copulas," European Economic Review, Elsevier, vol. 141(C).
    7. Joshua C.C. Chan & Rodney W. Strachan, 2023. "Bayesian State Space Models In Macroeconometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 58-75, February.
    8. Sebastian Ankargren & Paulina Jon'eus, 2019. "Estimating Large Mixed-Frequency Bayesian VAR Models," Papers 1912.02231, arXiv.org.
    9. Gupta, Rangan & Kabundi, Alain & Miller, Stephen M., 2011. "Forecasting the US real house price index: Structural and non-structural models with and without fundamentals," Economic Modelling, Elsevier, vol. 28(4), pages 2013-2021, July.
    10. Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
    11. Chan, Joshua C.C., 2021. "Minnesota-type adaptive hierarchical priors for large Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1212-1226.
    12. Lukas Berend & Jan Pruser, 2024. "The Transmission of Monetary Policy via Common Cycles in the Euro Area," Papers 2410.05741, arXiv.org, revised Nov 2024.
    13. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    14. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    15. Michael Pfarrhofer, 2024. "Forecasts with Bayesian vector autoregressions under real time conditions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 771-801, April.
    16. Davide Pettenuzzo & Allan Timmermann, 2017. "Forecasting Macroeconomic Variables Under Model Instability," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 183-201, April.
    17. Gefang, Deborah & Koop, Gary & Poon, Aubrey, 2023. "Forecasting using variational Bayesian inference in large vector autoregressions with hierarchical shrinkage," International Journal of Forecasting, Elsevier, vol. 39(1), pages 346-363.
    18. Tamás Kiss & Hoang Nguyen & Pär Österholm, 2023. "Modelling Okun’s law: Does non-Gaussianity matter?," Empirical Economics, Springer, vol. 64(5), pages 2183-2213, May.
    19. Gregor Kastner & Florian Huber, 2020. "Sparse Bayesian vector autoregressions in huge dimensions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1142-1165, November.
    20. Ankargren Sebastian & Unosson Måns & Yang Yukai, 2020. "A Flexible Mixed-Frequency Vector Autoregression with a Steady-State Prior," Journal of Time Series Econometrics, De Gruyter, vol. 12(2), pages 1-41, July.

    More about this item

    Keywords

    G20; Industrial production forecasting; Bayesian additive regression trees; US-vs-China;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
    • E23 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Production

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:pacfin:v:87:y:2024:i:c:s0927538x24002610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/pacfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.