IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v168y2024ics0165188924001404.html
   My bibliography  Save this article

Closed-form approximations of moments and densities of continuous–time Markov models

Author

Listed:
  • Kristensen, Dennis
  • Lee, Young Jun
  • Mele, Antonio

Abstract

This paper develops power series expansions of a general class of moment functions, including transition densities and option prices, of continuous-time Markov processes, including jump–diffusions. The proposed expansions extend the ones in Kristensen and Mele (2011) to cover general Markov processes, and nest transition density and option price expansions recently developed in the literature, thereby connecting seemingly different ideas in a unified framework. We show how the general expansion can be implemented for fully general jump–diffusion models. We provide a new theory for the validity of the expansions which shows that series expansions are not guaranteed to converge as more terms are added in general once the time span of interest gets larger than some model–specific threshold. Thus, these methods should be used with caution when applied to problems with a larger time span of interest, such as long-term options or data observed at a low frequency. At the same time, the numerical studies in this paper demonstrate good performance of the proposed implementation in practice when applied to pricing options with time to maturity below three months. Thus, our expansions are particularly well suited for pricing ultra-short-term (such as “zero–day”) options.

Suggested Citation

  • Kristensen, Dennis & Lee, Young Jun & Mele, Antonio, 2024. "Closed-form approximations of moments and densities of continuous–time Markov models," Journal of Economic Dynamics and Control, Elsevier, vol. 168(C).
  • Handle: RePEc:eee:dyncon:v:168:y:2024:i:c:s0165188924001404
    DOI: 10.1016/j.jedc.2024.104948
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165188924001404
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jedc.2024.104948?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Continuous-time models; Jump-diffusion; Transition density; Stochastic volatility; Closed-form approximations; Maximum-likelihood estimation; Option pricing;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:168:y:2024:i:c:s0165188924001404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.