IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2412.00658.html
   My bibliography  Save this paper

Probabilistic Predictions of Option Prices Using Multiple Sources of Data

Author

Listed:
  • Worapree Maneesoonthorn
  • David T. Frazier
  • Gael M. Martin

Abstract

A new modular approximate Bayesian inferential framework is proposed that enables fast calculation of probabilistic predictions of future option prices. We exploit multiple information sources, including daily spot returns, high-frequency spot data and option prices. A benefit of this modular Bayesian approach is that it allows us to work with the theoretical option pricing model, without needing to specify an arbitrary statistical model that links the theoretical prices to their observed counterparts. We show that our approach produces accurate probabilistic predictions of option prices in realistic scenarios and, despite not explicitly modelling pricing errors, the method is shown to be robust to their presence. Predictive accuracy based on the Heston stochastic volatility model, with predictions produced via rapid real-time updates, is illustrated empirically for short-maturity options.

Suggested Citation

  • Worapree Maneesoonthorn & David T. Frazier & Gael M. Martin, 2024. "Probabilistic Predictions of Option Prices Using Multiple Sources of Data," Papers 2412.00658, arXiv.org.
  • Handle: RePEc:arx:papers:2412.00658
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2412.00658
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    2. Yacine Aït-Sahalia & Chenxu Li & Chen Xu Li & Ralph Koijen, 2021. "Implied Stochastic Volatility Models," Review of Economic Studies, Oxford University Press, vol. 34(1), pages 394-450.
    3. Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2021. "Closed-form implied volatility surfaces for stochastic volatility models with jumps," Journal of Econometrics, Elsevier, vol. 222(1), pages 364-392.
    4. Frazier, David T. & Maneesoonthorn, Worapree & Martin, Gael M. & McCabe, Brendan P.M., 2019. "Approximate Bayesian forecasting," International Journal of Forecasting, Elsevier, vol. 35(2), pages 521-539.
    5. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    6. Feunou, Bruno & Okou, Cédric, 2019. "Good Volatility, Bad Volatility, and Option Pricing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 54(2), pages 695-727, April.
    7. Frazier, David T. & Oka, Tatsushi & Zhu, Dan, 2019. "Indirect inference with a non-smooth criterion function," Journal of Econometrics, Elsevier, vol. 212(2), pages 623-645.
    8. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
    9. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    10. Pan, Jun, 2002. "The jump-risk premia implicit in options: evidence from an integrated time-series study," Journal of Financial Economics, Elsevier, vol. 63(1), pages 3-50, January.
    11. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2016. "Exploiting the errors: A simple approach for improved volatility forecasting," Journal of Econometrics, Elsevier, vol. 192(1), pages 1-18.
    12. Bollerslev, Tim & Gibson, Michael & Zhou, Hao, 2011. "Dynamic estimation of volatility risk premia and investor risk aversion from option-implied and realized volatilities," Journal of Econometrics, Elsevier, vol. 160(1), pages 235-245, January.
    13. George J. Jiang & Yisong S. Tian, 2005. "The Model-Free Implied Volatility and Its Information Content," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1305-1342.
    14. Gospodinov, Nikolay & Komunjer, Ivana & Ng, Serena, 2017. "Simulated minimum distance estimation of dynamic models with errors-in-variables," Journal of Econometrics, Elsevier, vol. 200(2), pages 181-193.
    15. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    16. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    17. repec:bla:jfinan:v:59:y:2004:i:3:p:1367-1404 is not listed on IDEAS
    18. Christoffersen, Peter & Jacobs, Kris & Ornthanalai, Chayawat & Wang, Yintian, 2008. "Option valuation with long-run and short-run volatility components," Journal of Financial Economics, Elsevier, vol. 90(3), pages 272-297, December.
    19. V. L. Martin & G. M. Martin & G. C. Lim, 2005. "Parametric pricing of higher order moments in S&P500 options," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(3), pages 377-404.
    20. Frazier, David T. & Koo, Bonsoo, 2021. "Indirect inference for locally stationary models," Journal of Econometrics, Elsevier, vol. 223(1), pages 1-27.
    21. Bruins, Marianne & Duffy, James A. & Keane, Michael P. & Smith, Anthony A., 2018. "Generalized indirect inference for discrete choice models," Journal of Econometrics, Elsevier, vol. 205(1), pages 177-203.
    22. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    23. Yacine Aït-Sahalia & Chenxu Li & Chen Xu Li, 2021. "Implied Stochastic Volatility Models [Testing continuous-time models of the spot interest rate]," The Review of Financial Studies, Society for Financial Studies, vol. 34(1), pages 394-450.
    24. Das, Sanjiv Ranjan & Sundaram, Rangarajan K., 1999. "Of Smiles and Smirks: A Term Structure Perspective," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(2), pages 211-239, June.
    25. Gael M. Martin & Catherine S. Forbes & Vance L. Martin, 2005. "Implicit Bayesian Inference Using Option Prices," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(3), pages 437-462, May.
    26. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    27. Xin Huang & George Tauchen, 2005. "The Relative Contribution of Jumps to Total Price Variance," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 456-499.
    28. Catherine S. Forbes & Gael M. Martin & Jill Wright, 2007. "Inference for a Class of Stochastic Volatility Models Using Option and Spot Prices: Application of a Bivariate Kalman Filter," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 387-418.
    29. D T Frazier & G M Martin & C P Robert & J Rousseau, 2018. "Asymptotic properties of approximate Bayesian computation," Biometrika, Biometrika Trust, vol. 105(3), pages 593-607.
    30. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    31. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S. & Grose, Simone D., 2012. "Probabilistic forecasts of volatility and its risk premia," Journal of Econometrics, Elsevier, vol. 171(2), pages 217-236.
    32. Jones, Christopher S., 2003. "The dynamics of stochastic volatility: evidence from underlying and options markets," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 181-224.
    33. Hirsa, Ali & Neftci, Salih N., 2013. "An Introduction to the Mathematics of Financial Derivatives," Elsevier Monographs, Elsevier, edition 3, number 9780123846822.
    34. Chaudhuri, Saraswata & Frazier, David T. & Renault, Eric, 2018. "Indirect Inference with endogenously missing exogenous variables," Journal of Econometrics, Elsevier, vol. 205(1), pages 55-75.
    35. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    36. Siem Jan Koopman & Marcel Scharth, 2012. "The Analysis of Stochastic Volatility in the Presence of Daily Realized Measures," Journal of Financial Econometrics, Oxford University Press, vol. 11(1), pages 76-115, December.
    37. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S., 2020. "High-frequency jump tests: Which test should we use?," Journal of Econometrics, Elsevier, vol. 219(2), pages 478-487.
    38. Ruiz, Esther, 1994. "Quasi-maximum likelihood estimation of stochastic volatility models," Journal of Econometrics, Elsevier, vol. 63(1), pages 289-306, July.
    39. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    40. George J. Jiang, 2002. "Testing Option Pricing Models with Stochastic Volatility, Random Jumps and Stochastic Interest Rates," International Review of Finance, International Review of Finance Ltd., vol. 3(3‐4), pages 233-272, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S. & Grose, Simone D., 2012. "Probabilistic forecasts of volatility and its risk premia," Journal of Econometrics, Elsevier, vol. 171(2), pages 217-236.
    2. Papantonis, Ioannis & Rompolis, Leonidas & Tzavalis, Elias, 2023. "Improving variance forecasts: The role of Realized Variance features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1221-1237.
    3. Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023. "The contribution of jump signs and activity to forecasting stock price volatility," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
    4. Worapree Maneesoonthorn & Catherine S. Forbes & Gael M. Martin, 2017. "Inference on Self‐Exciting Jumps in Prices and Volatility Using High‐Frequency Measures," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(3), pages 504-532, April.
    5. Bollerslev, Tim & Gibson, Michael & Zhou, Hao, 2011. "Dynamic estimation of volatility risk premia and investor risk aversion from option-implied and realized volatilities," Journal of Econometrics, Elsevier, vol. 160(1), pages 235-245, January.
    6. Christoffersen, Peter & Jacobs, Kris & Ornthanalai, Chayawat & Wang, Yintian, 2008. "Option valuation with long-run and short-run volatility components," Journal of Financial Economics, Elsevier, vol. 90(3), pages 272-297, December.
    7. Busch, Thomas & Christensen, Bent Jesper & Nielsen, Morten Ørregaard, 2011. "The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets," Journal of Econometrics, Elsevier, vol. 160(1), pages 48-57, January.
    8. Majewski, Adam A. & Bormetti, Giacomo & Corsi, Fulvio, 2015. "Smile from the past: A general option pricing framework with multiple volatility and leverage components," Journal of Econometrics, Elsevier, vol. 187(2), pages 521-531.
    9. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    10. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    11. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
    12. Byun, Suk Joon & Jeon, Byoung Hyun & Min, Byungsun & Yoon, Sun-Joong, 2015. "The role of the variance premium in Jump-GARCH option pricing models," Journal of Banking & Finance, Elsevier, vol. 59(C), pages 38-56.
    13. Christoffersen, Peter & Heston, Steve & Jacobs, Kris, 2006. "Option valuation with conditional skewness," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 253-284.
    14. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S., 2020. "High-frequency jump tests: Which test should we use?," Journal of Econometrics, Elsevier, vol. 219(2), pages 478-487.
    15. Adam Aleksander Majewski & Giacomo Bormetti & Fulvio Corsi, 2014. "Smile from the Past: A general option pricing framework with multiple volatility and leverage components," Papers 1404.3555, arXiv.org.
    16. Robert Azencott & Yutheeka Gadhyan & Roland Glowinski, 2014. "Option Pricing Accuracy for Estimated Heston Models," Papers 1404.4014, arXiv.org, revised Jul 2015.
    17. Gael M. Martin & Andrew Reidy & Jill Wright, 2009. "Does the option market produce superior forecasts of noise-corrected volatility measures?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(1), pages 77-104.
    18. Bing-Huei Lin & Mao-Wei Hung & Jr-Yan Wang & Ping-Da Wu, 2013. "A lattice model for option pricing under GARCH-jump processes," Review of Derivatives Research, Springer, vol. 16(3), pages 295-329, October.
    19. Papantonis Ioannis & Rompolis Leonidas S. & Tzavalis Elias & Agapitos Orestis, 2023. "Augmenting the Realized-GARCH: the role of signed-jumps, attenuation-biases and long-memory effects," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 27(2), pages 171-198, April.
    20. Yu-Hua Zeng & Shou-Lei Wang & Yu-Fei Yang, 2014. "Calibration of the Volatility in Option Pricing Using the Total Variation Regularization," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-9, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2412.00658. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.