IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v6y2018i3p39-d165046.html
   My bibliography  Save this article

The Stochastic Stationary Root Model

Author

Listed:
  • Andreas Hetland

    (Department of Economics, University of Copenhagen, 1353 Copenhagen K, Denmark)

Abstract

We propose and study the stochastic stationary root model. The model resembles the cointegrated VAR model but is novel in that: (i) the stationary relations follow a random coefficient autoregressive process, i.e., exhibhits heavy-tailed dynamics, and (ii) the system is observed with measurement error. Unlike the cointegrated VAR model, estimation and inference for the SSR model is complicated by a lack of closed-form expressions for the likelihood function and its derivatives. To overcome this, we introduce particle filter-based approximations of the log-likelihood function, sample score, and observed Information matrix. These enable us to approximate the ML estimator via stochastic approximation and to conduct inference via the approximated observed Information matrix. We conjecture the asymptotic properties of the ML estimator and conduct a simulation study to investigate the validity of the conjecture. Model diagnostics to assess model fit are considered. Finally, we present an empirical application to the 10-year government bond rates in Germany and Greece during the period from January 1999 to February 2018.

Suggested Citation

  • Andreas Hetland, 2018. "The Stochastic Stationary Root Model," Econometrics, MDPI, vol. 6(3), pages 1-33, August.
  • Handle: RePEc:gam:jecnmx:v:6:y:2018:i:3:p:39-:d:165046
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/6/3/39/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/6/3/39/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kristensen, Dennis & Rahbek, Anders, 2010. "Likelihood-based inference for cointegration with nonlinear error-correction," Journal of Econometrics, Elsevier, vol. 158(1), pages 78-94, September.
    2. Heino Bohn Nielsen, 2016. "The Co-Integrated Vector Autoregression with Errors-in-Variables," Econometric Reviews, Taylor & Francis Journals, vol. 35(2), pages 169-200, February.
    3. Frédérique Bec & Anders Rahbek & Neil Shephard, 2008. "The ACR Model: A Multivariate Dynamic Mixture Autoregression," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(5), pages 583-618, October.
    4. Jensen, Søren Tolver & Rahbek, Anders, 2004. "Asymptotic Inference For Nonstationary Garch," Econometric Theory, Cambridge University Press, vol. 20(6), pages 1203-1226, December.
    5. Rasmus Pedersen & Olivier Wintenberger, 2017. "On the tail behavior of a class of multivariate conditionally heteroskedastic processes," Papers 1701.05091, arXiv.org, revised Dec 2017.
    6. Lieberman, Offer & Phillips, Peter C.B., 2017. "A multivariate stochastic unit root model with an application to derivative pricing," Journal of Econometrics, Elsevier, vol. 196(1), pages 99-110.
    7. Frédérique Bec & Anders Rahbek, 2004. "Vector equilibrium correction models with non-linear discontinuous adjustments," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 628-651, December.
    8. Christophe Andrieu & Arnaud Doucet, 2002. "Particle filtering for partially observed Gaussian state space models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 827-836, October.
    9. Offer Lieberman & Peter C. B. Phillips, 2014. "Norming Rates And Limit Theory For Some Time-Varying Coefficient Autoregressions," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 592-623, November.
    10. Shiqing Ling, 2004. "Estimation and testing stationarity for double‐autoregressive models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 63-78, February.
    11. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    12. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    13. Arnaud Doucet & Neil Shephard, 2012. "Robust inference on parameters via particle filters and sandwich covariance matrices," Economics Papers 2012-W05, Economics Group, Nuffield College, University of Oxford.
    14. Rong Chen & Jun S. Liu, 2000. "Mixture Kalman filters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(3), pages 493-508.
    15. George Poyiadjis & Arnaud Doucet & Sumeetpal S. Singh, 2011. "Particle approximations of the score and observed information matrix in state space models with application to parameter estimation," Biometrika, Biometrika Trust, vol. 98(1), pages 65-80.
    16. Kristensen, Dennis & Rahbek, Anders, 2013. "Testing And Inference In Nonlinear Cointegrating Vector Error Correction Models," Econometric Theory, Cambridge University Press, vol. 29(6), pages 1238-1288, December.
    17. Granger, Clive W. J. & Swanson, Norman R., 1997. "An introduction to stochastic unit-root processes," Journal of Econometrics, Elsevier, vol. 80(1), pages 35-62, September.
    18. Nielsen, Heino Bohn & Rahbek, Anders, 2014. "Unit root vector autoregression with volatility induced stationarity," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 144-167.
    19. Drew Creal, 2012. "A Survey of Sequential Monte Carlo Methods for Economics and Finance," Econometric Reviews, Taylor & Francis Journals, vol. 31(3), pages 245-296.
    20. Leybourne, S J & McCabe, B P M & Tremayne, A R, 1996. "Can Economic Time Series Be Differenced to Stationarity?," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 435-446, October.
    21. Paul D. Feigin & Richard L. Tweedie, 1985. "Random Coefficient Autoregressive Processes:A Markov Chain Analysis Of Stationarity And Finiteness Of Moments," Journal of Time Series Analysis, Wiley Blackwell, vol. 6(1), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muriel, Nelson & González-Farías, Graciela, 2018. "Testing the null of difference stationarity against the alternative of a stochastic unit root: A new test based on multivariate STUR," Econometrics and Statistics, Elsevier, vol. 7(C), pages 46-62.
    2. Nielsen, Heino Bohn & Rahbek, Anders, 2014. "Unit root vector autoregression with volatility induced stationarity," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 144-167.
    3. Lorenzo Trapani, 2021. "Testing for strict stationarity in a random coefficient autoregressive model," Econometric Reviews, Taylor & Francis Journals, vol. 40(3), pages 220-256, April.
    4. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107034723, October.
    5. Kristensen, Dennis & Rahbek, Anders, 2010. "Likelihood-based inference for cointegration with nonlinear error-correction," Journal of Econometrics, Elsevier, vol. 158(1), pages 78-94, September.
    6. Guo, Shaojun & Li, Dong & Li, Muyi, 2019. "Strict stationarity testing and GLAD estimation of double autoregressive models," Journal of Econometrics, Elsevier, vol. 211(2), pages 319-337.
    7. Lieberman, Offer & Phillips, Peter C.B., 2022. "Understanding temporal aggregation effects on kurtosis in financial indices," Journal of Econometrics, Elsevier, vol. 227(1), pages 25-46.
    8. Horváth, Lajos & Trapani, Lorenzo, 2019. "Testing for randomness in a random coefficient autoregression model," Journal of Econometrics, Elsevier, vol. 209(2), pages 338-352.
    9. Lieberman, Offer & Phillips, Peter C.B., 2020. "Hybrid stochastic local unit roots," Journal of Econometrics, Elsevier, vol. 215(1), pages 257-285.
    10. Yoon, Gawon, 2016. "Stochastic unit root processes: Maximum likelihood estimation, and new Lagrange multiplier and likelihood ratio tests," Economic Modelling, Elsevier, vol. 52(PB), pages 725-732.
    11. Wen Xu, 2016. "Estimation of Dynamic Panel Data Models with Stochastic Volatility Using Particle Filters," Econometrics, MDPI, vol. 4(4), pages 1-13, October.
    12. Fong, P.W. & Li, W.K. & An, Hong-Zhi, 2006. "A simple multivariate ARCH model specified by random coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1779-1802, December.
    13. Francq, Christian & Makarova, Svetlana & Zakoi[diaeresis]an, Jean-Michel, 2008. "A class of stochastic unit-root bilinear processes: Mixing properties and unit-root test," Journal of Econometrics, Elsevier, vol. 142(1), pages 312-326, January.
    14. Francisco Blasques & Paolo Gorgi & Siem Jan Koopman & Olivier Wintenberger, 2016. "Feasible Invertibility Conditions and Maximum Likelihood Estimation for Observation-Driven Models," Tinbergen Institute Discussion Papers 16-082/III, Tinbergen Institute.
    15. Tommaso Proietti & Alessandra Luati, 2013. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 15, pages 334-362, Edward Elgar Publishing.
    16. Karamé, Frédéric, 2018. "A new particle filtering approach to estimate stochastic volatility models with Markov-switching," Econometrics and Statistics, Elsevier, vol. 8(C), pages 204-230.
    17. Tao, Yubo & Phillips, Peter C.B. & Yu, Jun, 2019. "Random coefficient continuous systems: Testing for extreme sample path behavior," Journal of Econometrics, Elsevier, vol. 209(2), pages 208-237.
    18. Drew Creal & Siem Jan Koopman & Eric Zivot, 2010. "Extracting a robust US business cycle using a time-varying multivariate model-based bandpass filter," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 695-719.
    19. F Blasques & P Gorgi & S Koopman & O Wintenberger, 2016. "Feasible Invertibility Conditions for Maximum Likelihood Estimation for Observation-Driven Models," Papers 1610.02863, arXiv.org.
    20. Li, Yong & Liu, Xiao-Bin & Yu, Jun, 2015. "A Bayesian chi-squared test for hypothesis testing," Journal of Econometrics, Elsevier, vol. 189(1), pages 54-69.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:6:y:2018:i:3:p:39-:d:165046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.