IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v235y2023i2p1394-1418.html
   My bibliography  Save this article

Intraday cross-sectional distributions of systematic risk

Author

Listed:
  • Andersen, Torben G.
  • Riva, Raul
  • Thyrsgaard, Martin
  • Todorov, Viktor

Abstract

We develop a test for the detection of intraday changes in the cross-sectional distribution of assets’ exposure to observable factors. The test is constructed for a panel of high-frequency asset returns, with the size of the cross-section and the sampling frequency increasing simultaneously. It is based on a comparison of the empirical characteristic functions of estimates of the assets’ factor loadings at different parts of the trading day, formed from local blocks of asset returns and the corresponding factor realizations. The limiting behavior of the test statistic is governed by unobservable latent factors in the asset prices. The critical values of the test are constructed on the basis of a novel simulation-based procedure. Empirical implementation of the test to stocks in the S&P 500 index and the five Fama–French factors, as well as the momentum factor, reveals different intraday behavior of the factor loadings: assets’ exposure to size, market and value risks vary systematically over the trading day while the three remaining factors do not exhibit statistically significant intraday variation. Moreover, we find diverse, and for some factors large, reactions in the assets’ factor loadings to major economic or firm specific news releases. Finally, we document that time-varying correlations between the observable risk factors drive a wedge between the time-of-day pattern of market betas, estimated with and without control for the other observable risk factors.

Suggested Citation

  • Andersen, Torben G. & Riva, Raul & Thyrsgaard, Martin & Todorov, Viktor, 2023. "Intraday cross-sectional distributions of systematic risk," Journal of Econometrics, Elsevier, vol. 235(2), pages 1394-1418.
  • Handle: RePEc:eee:econom:v:235:y:2023:i:2:p:1394-1418
    DOI: 10.1016/j.jeconom.2022.11.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407622002032
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2022.11.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ben S. Bernanke & Kenneth N. Kuttner, 2005. "What Explains the Stock Market's Reaction to Federal Reserve Policy?," Journal of Finance, American Finance Association, vol. 60(3), pages 1221-1257, June.
    2. Kelly, Bryan T. & Pruitt, Seth & Su, Yinan, 2019. "Characteristics are covariances: A unified model of risk and return," Journal of Financial Economics, Elsevier, vol. 134(3), pages 501-524.
    3. Patrick Gagliardini & Elisa Ossola & Olivier Scaillet, 2016. "Time‐Varying Risk Premium in Large Cross‐Sectional Equity Data Sets," Econometrica, Econometric Society, vol. 84, pages 985-1046, May.
    4. Z. Merrick Li & Oliver Linton, 2022. "A ReMeDI for Microstructure Noise," Econometrica, Econometric Society, vol. 90(1), pages 367-389, January.
    5. Jagannathan, Ravi & Wang, Zhenyu, 1996. "The Conditional CAPM and the Cross-Section of Expected Returns," Journal of Finance, American Finance Association, vol. 51(1), pages 3-53, March.
    6. Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Econometric Analysis of Realized Covariation: High Frequency Based Covariance, Regression, and Correlation in Financial Economics," Econometrica, Econometric Society, vol. 72(3), pages 885-925, May.
    7. Li, Jia & Todorov, Viktor & Tauchen, George, 2017. "Adaptive estimation of continuous-time regression models using high-frequency data," Journal of Econometrics, Elsevier, vol. 200(1), pages 36-47.
    8. Andrew J. Patton & Michela Verardo, 2012. "Does Beta Move with News? Firm-Specific Information Flows and Learning about Profitability," The Review of Financial Studies, Society for Financial Studies, vol. 25(9), pages 2789-2839.
    9. Hengjie Ai & Ravi Bansal, 2018. "Risk Preferences and the Macroeconomic Announcement Premium," Econometrica, Econometric Society, vol. 86(4), pages 1383-1430, July.
    10. Emi Nakamura & Jón Steinsson, 2018. "High-Frequency Identification of Monetary Non-Neutrality: The Information Effect," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(3), pages 1283-1330.
    11. Carhart, Mark M, 1997. "On Persistence in Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 52(1), pages 57-82, March.
    12. David O. Lucca & Emanuel Moench, 2015. "The Pre-FOMC Announcement Drift," Journal of Finance, American Finance Association, vol. 70(1), pages 329-371, February.
    13. Mariana García-Schmidt & Michael Woodford, 2019. "Are Low Interest Rates Deflationary? A Paradox of Perfect-Foresight Analysis," American Economic Review, American Economic Association, vol. 109(1), pages 86-120, January.
    14. Per A. Mykland & Lan Zhang, 2009. "Inference for Continuous Semimartingales Observed at High Frequency," Econometrica, Econometric Society, vol. 77(5), pages 1403-1445, September.
    15. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Jin Wu, 2005. "A Framework for Exploring the Macroeconomic Determinants of Systematic Risk," American Economic Review, American Economic Association, vol. 95(2), pages 398-404, May.
    16. Chernov, Mikhail & Ronald Gallant, A. & Ghysels, Eric & Tauchen, George, 2003. "Alternative models for stock price dynamics," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 225-257.
    17. Refet S Gürkaynak & Brian Sack & Eric Swanson, 2005. "Do Actions Speak Louder Than Words? The Response of Asset Prices to Monetary Policy Actions and Statements," International Journal of Central Banking, International Journal of Central Banking, vol. 1(1), May.
    18. Bogousslavsky, Vincent, 2021. "The cross-section of intraday and overnight returns," Journal of Financial Economics, Elsevier, vol. 141(1), pages 172-194.
    19. Shanken, Jay, 1990. "Intertemporal asset pricing : An Empirical Investigation," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 99-120.
    20. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    21. Tim Bollerslev & Viktor Todorov, 2011. "Estimation of Jump Tails," Econometrica, Econometric Society, vol. 79(6), pages 1727-1783, November.
    22. Aït-Sahalia, Yacine & Kalnina, Ilze & Xiu, Dacheng, 2020. "High-frequency factor models and regressions," Journal of Econometrics, Elsevier, vol. 216(1), pages 86-105.
    23. Torben G. Andersen & Martin Thyrsgaard & Viktor Todorov, 2021. "Recalcitrant betas: Intraday variation in the cross‐sectional dispersion of systematic risk," Quantitative Economics, Econometric Society, vol. 12(2), pages 647-682, May.
    24. Anna Cieslak & Adair Morse & Annette Vissing‐Jorgensen, 2019. "Stock Returns over the FOMC Cycle," Journal of Finance, American Finance Association, vol. 74(5), pages 2201-2248, October.
    25. Jean Jacod & Yingying Li & Xinghua Zheng, 2017. "Statistical Properties of Microstructure Noise," Econometrica, Econometric Society, vol. 85, pages 1133-1174, July.
    26. Savor, Pavel & Wilson, Mungo, 2014. "Asset pricing: A tale of two days," Journal of Financial Economics, Elsevier, vol. 113(2), pages 171-201.
    27. Reiß, Markus & Todorov, Viktor & Tauchen, George, 2015. "Nonparametric test for a constant beta between Itô semi-martingales based on high-frequency data," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 2955-2988.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bollerslev, Tim & Li, Jia & Li, Qiyuan, 2024. "Optimal nonparametric range-based volatility estimation," Journal of Econometrics, Elsevier, vol. 238(1).
    2. Ai, Hengjie & Han, Leyla Jianyu & Pan, Xuhui Nick & Xu, Lai, 2022. "The cross section of the monetary policy announcement premium," Journal of Financial Economics, Elsevier, vol. 143(1), pages 247-276.
    3. Andreas Neuhierl & Michael Weber & Michael Weber, 2017. "Monetary Momentum," CESifo Working Paper Series 6648, CESifo.
    4. Ozdagli, Ali & Velikov, Mihail, 2020. "Show me the money: The monetary policy risk premium," Journal of Financial Economics, Elsevier, vol. 135(2), pages 320-339.
    5. Blasques, F. & Francq, Christian & Laurent, Sébastien, 2024. "Autoregressive conditional betas," Journal of Econometrics, Elsevier, vol. 238(2).
    6. Bodilsen, Simon & Eriksen, Jonas N. & Grønborg, Niels S., 2021. "Asset pricing and FOMC press conferences," Journal of Banking & Finance, Elsevier, vol. 128(C).
    7. Andrew Detzel, 2017. "Monetary Policy Surprises, Investment Opportunities, And Asset Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 40(3), pages 315-348, September.
    8. Michael Hasler & Charles Martineau, 2023. "Explaining the Failure of the Unconditional CAPM with the Conditional CAPM," Management Science, INFORMS, vol. 69(3), pages 1835-1855, March.
    9. Chen, Dachuan & Mykland, Per A. & Zhang, Lan, 2024. "Realized regression with asynchronous and noisy high frequency and high dimensional data," Journal of Econometrics, Elsevier, vol. 239(2).
    10. Bollerslev, Tim & Li, Sophia Zhengzi & Todorov, Viktor, 2016. "Roughing up beta: Continuous versus discontinuous betas and the cross section of expected stock returns," Journal of Financial Economics, Elsevier, vol. 120(3), pages 464-490.
    11. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019. "A diagnostic criterion for approximate factor structure," Journal of Econometrics, Elsevier, vol. 212(2), pages 503-521.
    12. Rui Guo & Dun Jia & Xi Sun, 2023. "Information Acquisition, Uncertainty Reduction, and Pre-Announcement Premium in China," Review of Finance, European Finance Association, vol. 27(3), pages 1077-1118.
    13. Hoang, Khoa & Huang, Ronghong & Truong, Helen, 2023. "Resurrecting the market factor: A case of data mining across international markets," Pacific-Basin Finance Journal, Elsevier, vol. 82(C).
    14. Sun, Yucheng & Xu, Wen & Zhang, Chuanhai, 2023. "Identifying latent factors based on high-frequency data," Journal of Econometrics, Elsevier, vol. 233(1), pages 251-270.
    15. Bakalli, Gaetan & Guerrier, Stéphane & Scaillet, Olivier, 2023. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Journal of Econometrics, Elsevier, vol. 237(2).
    16. Tim Bollerslev & Sophia Zhengzi Li & Viktor Todorov, 2014. "Roughing up Beta: Continuous vs. Discontinuous Betas, and the Cross-Section of Expected Stock Returns," CREATES Research Papers 2014-48, Department of Economics and Business Economics, Aarhus University.
    17. Lakdawala, Aeimit & Schaffer, Matthew, 2019. "Federal reserve private information and the stock market," Journal of Banking & Finance, Elsevier, vol. 106(C), pages 34-49.
    18. Aït-Sahalia, Yacine & Kalnina, Ilze & Xiu, Dacheng, 2020. "High-frequency factor models and regressions," Journal of Econometrics, Elsevier, vol. 216(1), pages 86-105.
    19. Gómez-Cram, Roberto & Grotteria, Marco, 2022. "Real-time price discovery via verbal communication: Method and application to Fedspeak," Journal of Financial Economics, Elsevier, vol. 143(3), pages 993-1025.
    20. Bilel Sanhaji & Julien Chevallier, 2023. "Tracking ‘Pure’ Systematic Risk with Realized Betas for Bitcoin and Ethereum," Econometrics, MDPI, vol. 11(3), pages 1-36, August.

    More about this item

    Keywords

    Asset pricing; Dynamic factor models; Empirical characteristic function; High-frequency data; Nonparametric inference; Stable convergence;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:235:y:2023:i:2:p:1394-1418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.