IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v136y2024ics0264999324001019.html
   My bibliography  Save this article

Heterogeneity effect of positive and negative jumps on the realized volatility: Evidence from China

Author

Listed:
  • Song, Yuping
  • Huang, Jiefei
  • Zhang, Qichao
  • Xu, Yang

Abstract

The existing literature overlooks the different responses of the stock market to jump risk during high and low volatility periods. We examine the impact of positive and negative jumps on China's composite index and sector index volatilities across various volatility regimes from January 4, 2010 to June 30, 2023 based on 5-min high-frequency data and quantile regression. The results indicate that the asymmetry of positive and negative jumps in the emerging sectors is not significant in the high quantiles, but is significant in the middle and low quantiles, compared with the composite index and traditional sectors. The volatility change driven by the negative jump of most emerging sectors indices exhibits a clear ‘J’ shaped distribution. Moreover, COVID-19 has weakened the positive relationship between negative jumps and volatility in traditional sectors. This work alerts risk managers to focus on negative jump risks when markets are in periods of high volatility.

Suggested Citation

  • Song, Yuping & Huang, Jiefei & Zhang, Qichao & Xu, Yang, 2024. "Heterogeneity effect of positive and negative jumps on the realized volatility: Evidence from China," Economic Modelling, Elsevier, vol. 136(C).
  • Handle: RePEc:eee:ecmode:v:136:y:2024:i:c:s0264999324001019
    DOI: 10.1016/j.econmod.2024.106745
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999324001019
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2024.106745?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bertrand Candelon & Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2011. "Backtesting Value-at-Risk: A GMM Duration-Based Test," Journal of Financial Econometrics, Oxford University Press, vol. 9(2), pages 314-343, Spring.
    2. Koenker, Roger & Xiao, Zhijie, 2006. "Quantile Autoregression," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 980-990, September.
    3. Corsi, Fulvio & Pirino, Davide & Renò, Roberto, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Journal of Econometrics, Elsevier, vol. 159(2), pages 276-288, December.
    4. Liao, Yin, 2013. "The benefit of modeling jumps in realized volatility for risk prediction: Evidence from Chinese mainland stocks," Pacific-Basin Finance Journal, Elsevier, vol. 23(C), pages 25-48.
    5. Ahmed, Walid M.A., 2021. "How do Islamic equity markets respond to good and bad volatility of cryptocurrencies? The case of Bitcoin," Pacific-Basin Finance Journal, Elsevier, vol. 70(C).
    6. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
    7. Hu, Genhua & Jiang, Haifeng, 2023. "Time-varying jumps in China crude oil futures market impacted by COVID-19 pandemic," Resources Policy, Elsevier, vol. 82(C).
    8. Leippold, Markus & Wang, Qian & Zhou, Wenyu, 2022. "Machine learning in the Chinese stock market," Journal of Financial Economics, Elsevier, vol. 145(2), pages 64-82.
    9. Andrew J. Patton & Kevin Sheppard, 2015. "Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility," The Review of Economics and Statistics, MIT Press, vol. 97(3), pages 683-697, July.
    10. Ying-qing Gong, 2013. "The Volatility and Cycle of Emerging Industry Stock Market in China: An Empirical Study Based on EEMD," Springer Books, in: Ershi Qi & Jiang Shen & Runliang Dou (ed.), Proceedings of 20th International Conference on Industrial Engineering and Engineering Management, edition 127, pages 279-289, Springer.
    11. Tai‐Yong Roh & Alireza Tourani‐Rad & Yahua Xu & Yang Zhao, 2021. "Volatility‐of‐volatility risk in the crude oil market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(2), pages 245-265, February.
    12. Francesco Audrino & Yujia Hu, 2016. "Volatility Forecasting: Downside Risk, Jumps and Leverage Effect," Econometrics, MDPI, vol. 4(1), pages 1-24, February.
    13. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
    14. Andersen, Torben G. & Dobrev, Dobrislav & Schaumburg, Ernst, 2012. "Jump-robust volatility estimation using nearest neighbor truncation," Journal of Econometrics, Elsevier, vol. 169(1), pages 75-93.
    15. Han, Chunmao & Shi, Yongdong, 2022. "Chinese stock anomalies and investor sentiment," Pacific-Basin Finance Journal, Elsevier, vol. 73(C).
    16. Yanhui Jiang & Liang Liu & Yun Hong, 2021. "Political uncertainty, realized volatility, and jumps in the Chinese stock market," Applied Economics Letters, Taylor & Francis Journals, vol. 28(6), pages 518-522, March.
    17. Bouri, Elie & Awartani, Basel & Maghyereh, Aktham, 2016. "Crude oil prices and sectoral stock returns in Jordan around the Arab uprisings of 2010," Energy Economics, Elsevier, vol. 56(C), pages 205-214.
    18. Odusami, Babatunde O, 2021. "Forecasting the Value-at-Risk of REITs using realized volatility jump models," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    19. Manabu Asai & Rangan Gupta & Michael McAleer, 2019. "The Impact of Jumps and Leverage in Forecasting the Co-Volatility of Oil and Gold Futures," Energies, MDPI, vol. 12(17), pages 1-17, September.
    20. Bouri, Elie & Hammoud, Rami & Kassm, Christina Abou, 2023. "The effect of oil implied volatility and geopolitical risk on GCC stock sectors under various market conditions," Energy Economics, Elsevier, vol. 120(C).
    21. Filip Žikeš & Jozef Baruník, 2015. "Semi-parametric Conditional Quantile Models for Financial Returns and Realized Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 14(1), pages 185-226.
    22. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    23. Jose A. Lopez, 1999. "Methods for evaluating value-at-risk estimates," Economic Review, Federal Reserve Bank of San Francisco, pages 3-17.
    24. Guangzhong Li & Jie Li & Jiaqing Zhu, 2018. "Exchange rate jumps and exports: Evidence from China," The World Economy, Wiley Blackwell, vol. 41(9), pages 2374-2388, September.
    25. Clements, Michael P. & Galvão, Ana Beatriz & Kim, Jae H., 2008. "Quantile forecasts of daily exchange rate returns from forecasts of realized volatility," Journal of Empirical Finance, Elsevier, vol. 15(4), pages 729-750, September.
    26. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2014. "Realized volatility models and alternative Value-at-Risk prediction strategies," Economic Modelling, Elsevier, vol. 40(C), pages 101-116.
    27. Jiang, George J. & Oomen, Roel C.A., 2008. "Testing for jumps when asset prices are observed with noise-a "swap variance" approach," Journal of Econometrics, Elsevier, vol. 144(2), pages 352-370, June.
    28. Zhang, Yi & Zhou, Long & Chen, Yajiao & Liu, Fang, 2022. "The contagion effect of jump risk across Asian stock markets during the Covid-19 pandemic," The North American Journal of Economics and Finance, Elsevier, vol. 61(C).
    29. Zhang, Chuanhai & Liu, Zhi & Liu, Qiang, 2021. "Jumps at ultra-high frequency: Evidence from the Chinese stock market," Pacific-Basin Finance Journal, Elsevier, vol. 68(C).
    30. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    31. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized gold volatility: Is there a role of geopolitical risks?," Finance Research Letters, Elsevier, vol. 35(C).
    32. Asai, Manabu & Gupta, Rangan & McAleer, Michael, 2020. "Forecasting volatility and co-volatility of crude oil and gold futures: Effects of leverage, jumps, spillovers, and geopolitical risks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 933-948.
    33. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    34. Kislay Kumar Jha & Dirk G. Baur, 2020. "Regime-Dependent Good and Bad Volatility of Bitcoin," JRFM, MDPI, vol. 13(12), pages 1-16, December.
    35. Zargar, Faisal Nazir & Kumar, Dilip, 2020. "Modeling unbiased extreme value volatility estimator in presence of heterogeneity and jumps: A study with economic significance analysis," International Review of Economics & Finance, Elsevier, vol. 67(C), pages 25-41.
    36. Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023. "The contribution of jump signs and activity to forecasting stock price volatility," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
    37. Ma, Feng & Liao, Yin & Zhang, Yaojie & Cao, Yang, 2019. "Harnessing jump component for crude oil volatility forecasting in the presence of extreme shocks," Journal of Empirical Finance, Elsevier, vol. 52(C), pages 40-55.
    38. Bollerslev, Tim & Todorov, Viktor & Li, Sophia Zhengzi, 2013. "Jump tails, extreme dependencies, and the distribution of stock returns," Journal of Econometrics, Elsevier, vol. 172(2), pages 307-324.
    39. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    40. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    41. Liang, Chao & Li, Yan & Ma, Feng & Wei, Yu, 2021. "Global equity market volatilities forecasting: A comparison of leverage effects, jumps, and overnight information," International Review of Financial Analysis, Elsevier, vol. 75(C).
    42. Marcel Prokopczuk & Lazaros Symeonidis & Chardin Wese Simen, 2016. "Do Jumps Matter for Volatility Forecasting? Evidence from Energy Markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(8), pages 758-792, August.
    43. Feng, Yun & Hou, Weijie & Song, Yuping, 2023. "Asymmetric contagion of jump risk in the Chinese financial sector: Monetary policy transmission matters," Economic Modelling, Elsevier, vol. 119(C).
    44. repec:taf:jnlbes:v:30:y:2012:i:2:p:242-255 is not listed on IDEAS
    45. Aït-Sahalia, Yacine & Fan, Jianqing & Peng, Heng, 2009. "Nonparametric Transition-Based Tests for Jump Diffusions," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1102-1116.
    46. Andersen, Torben G. & Bollerslev, Tim & Dobrev, Dobrislav, 2007. "No-arbitrage semi-martingale restrictions for continuous-time volatility models subject to leverage effects, jumps and i.i.d. noise: Theory and testable distributional implications," Journal of Econometrics, Elsevier, vol. 138(1), pages 125-180, May.
    47. Tong, Yuan & Wan, Ning & Dai, Xingyu & Bi, Xiaoyi & Wang, Qunwei, 2022. "China's energy stock market jumps: To what extent does the COVID-19 pandemic play a part?," Energy Economics, Elsevier, vol. 109(C).
    48. González-Urteaga, Ana & Muga, Luis & Santamaria, Rafael, 2015. "Momentum and default risk. Some results using the jump component," International Review of Financial Analysis, Elsevier, vol. 40(C), pages 185-193.
    49. Suzanne S. Lee & Per A. Mykland, 2008. "Jumps in Financial Markets: A New Nonparametric Test and Jump Dynamics," The Review of Financial Studies, Society for Financial Studies, vol. 21(6), pages 2535-2563, November.
    50. Qiuyun Wang & Lu Liu, 2022. "Pandemic or panic? A firm-level study on the psychological and industrial impacts of COVID-19 on the Chinese stock market," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-38, December.
    51. Zhou, Chunyang & Wu, Chongfeng & Wang, Yudong, 2019. "Dynamic portfolio allocation with time-varying jump risk," Journal of Empirical Finance, Elsevier, vol. 50(C), pages 113-124.
    52. Dooyeon Cho & Seunghwa Rho, 2022. "On asymmetric volatility effects in currency markets," Empirical Economics, Springer, vol. 62(5), pages 2149-2177, May.
    53. Lin, Tiantian & Liu, Dehong & Zhang, Lili & Lung, Peter, 2019. "The information content of realized volatility of sector indices in China’s stock market," International Review of Economics & Finance, Elsevier, vol. 64(C), pages 625-640.
    54. Koesrindartoto, Deddy P. & Aaron, Aurelius & Yusgiantoro, Inka & Dharma, Wirata A. & Arroisi, Abdurrohman, 2020. "Who moves the stock market in an emerging country – Institutional or retail investors?," Research in International Business and Finance, Elsevier, vol. 51(C).
    55. Wang, Xingchun, 2020. "Pricing options on the maximum or minimum of multi-assets under jump-diffusion processes," International Review of Economics & Finance, Elsevier, vol. 70(C), pages 16-26.
    56. Dai, Xingyu & Li, Matthew C. & Xiao, Ling & Wang, Qunwei, 2022. "COVID-19 and China commodity price jump behavior: An information spillover and wavelet coherency analysis," Resources Policy, Elsevier, vol. 79(C).
    57. Pan, Di & Zhang, Chen & Zhu, Dandan & Ji, Yuanpu & Cao, Wei, 2022. "A novel method of detecting carbon asset price jump characteristics based on significant information shocks," Finance Research Letters, Elsevier, vol. 47(PA).
    58. Li, Xiafei & Liao, Yin & Lu, Xinjie & Ma, Feng, 2022. "An oil futures volatility forecast perspective on the selection of high-frequency jump tests," Energy Economics, Elsevier, vol. 116(C).
    59. Bee, Marco & Dupuis, Debbie J. & Trapin, Luca, 2016. "Realizing the extremes: Estimation of tail-risk measures from a high-frequency perspective," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 86-99.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiafei & Liao, Yin & Lu, Xinjie & Ma, Feng, 2022. "An oil futures volatility forecast perspective on the selection of high-frequency jump tests," Energy Economics, Elsevier, vol. 116(C).
    2. Chen, Yixiang & Ma, Feng & Zhang, Yaojie, 2019. "Good, bad cojumps and volatility forecasting: New evidence from crude oil and the U.S. stock markets," Energy Economics, Elsevier, vol. 81(C), pages 52-62.
    3. Chorro, Christophe & Ielpo, Florian & Sévi, Benoît, 2020. "The contribution of intraday jumps to forecasting the density of returns," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    4. Chen, Wang & Lu, Xinjie & Wang, Jiqian, 2022. "Modeling and managing stock market volatility using MRS-MIDAS model," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 625-635.
    5. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    6. Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023. "The contribution of jump signs and activity to forecasting stock price volatility," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
    7. Riza Demirer & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2022. "Risk aversion and the predictability of crude oil market volatility: A forecasting experiment with random forests," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(8), pages 1755-1767, August.
    8. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2020. "The contribution of intraday jumps to forecasting the density of returns," Post-Print halshs-02505861, HAL.
    9. Ma, Feng & Wahab, M.I.M. & Huang, Dengshi & Xu, Weiju, 2017. "Forecasting the realized volatility of the oil futures market: A regime switching approach," Energy Economics, Elsevier, vol. 67(C), pages 136-145.
    10. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Documents de travail du Centre d'Economie de la Sorbonne 17006, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    11. Filip Žikeš & Jozef Baruník, 2016. "Semi-parametric Conditional Quantile Models for Financial Returns and Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 185-226.
    12. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S., 2020. "High-frequency jump tests: Which test should we use?," Journal of Econometrics, Elsevier, vol. 219(2), pages 478-487.
    13. Aitor Ciarreta & Peru Muniainy & Ainhoa Zarraga, 2017. "Modelling Realized Volatility in Electricity Spot Prices: New insights and Application to the Japanese Electricity Market," ISER Discussion Paper 0991, Institute of Social and Economic Research, Osaka University.
    14. Liu, Yi & Liu, Huifang & Zhang, Lei, 2019. "Modeling and forecasting return jumps using realized variation measures," Economic Modelling, Elsevier, vol. 76(C), pages 63-80.
    15. Worapree Maneesoonthorn & Gael M. Martin & Catherine S. Forbes, 2017. "Dynamic asset price jumps and the performance of high frequency tests and measures," Monash Econometrics and Business Statistics Working Papers 14/17, Monash University, Department of Econometrics and Business Statistics.
    16. Dehua Shen & Andrew Urquhart & Pengfei Wang, 2020. "Forecasting the volatility of Bitcoin: The importance of jumps and structural breaks," European Financial Management, European Financial Management Association, vol. 26(5), pages 1294-1323, November.
    17. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2020. "The contribution of intraday jumps to forecasting the density of returns," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02505861, HAL.
    18. Ahdi Noomen Ajmi & Roula Inglesi-Lotz, 2021. "Revisiting the Kuznets Curve Hypothesis for Tunisia: Carbon Dioxide vs. Ecological Footprint," Working Papers 202171, University of Pretoria, Department of Economics.
    19. Ewald, Christian & Hadina, Jelena & Haugom, Erik & Lien, Gudbrand & Størdal, Ståle & Yahya, Muhammad, 2023. "Sample frequency robustness and accuracy in forecasting Value-at-Risk for Brent Crude Oil futures," Finance Research Letters, Elsevier, vol. 58(PA).
    20. Worapree Maneesoonthorn & Gael M Martin & Catherine S Forbes, 2018. "Dynamic price jumps: The performance of high frequency tests and measures, and the robustness of inference," Monash Econometrics and Business Statistics Working Papers 17/18, Monash University, Department of Econometrics and Business Statistics.

    More about this item

    Keywords

    Jump volatility; Quantile regression; Traditional sectors; Emerging sectors;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:136:y:2024:i:c:s0264999324001019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.