IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v6y2018i4p48-d190086.html
   My bibliography  Save this article

State-Space Models on the Stiefel Manifold with a New Approach to Nonlinear Filtering

Author

Listed:
  • Yukai Yang

    (Department of Statistics, Uppsala University, P.O. Box 513, SE-75120 Uppsala, Sweden
    Center for Data Analytics, Stockholm School of Economics, SE-11383 Stockholm, Sweden)

  • Luc Bauwens

    (Center for Operations Research and Econometrics, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium)

Abstract

We develop novel multivariate state-space models wherein the latent states evolve on the Stiefel manifold and follow a conditional matrix Langevin distribution. The latent states correspond to time-varying reduced rank parameter matrices, like the loadings in dynamic factor models and the parameters of cointegrating relations in vector error-correction models. The corresponding nonlinear filtering algorithms are developed and evaluated by means of simulation experiments.

Suggested Citation

  • Yukai Yang & Luc Bauwens, 2018. "State-Space Models on the Stiefel Manifold with a New Approach to Nonlinear Filtering," Econometrics, MDPI, vol. 6(4), pages 1-22, December.
  • Handle: RePEc:gam:jecnmx:v:6:y:2018:i:4:p:48-:d:190086
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/6/4/48/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/6/4/48/
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Breitung, Jörg & Eickmeier, Sandra, 2011. "Testing for structural breaks in dynamic factor models," Journal of Econometrics, Elsevier, vol. 163(1), pages 71-84, July.
    2. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    3. Marco Del Negro & Christopher Otrok, 2008. "Dynamic factor models with time-varying parameters: measuring changes in international business cycles," Staff Reports 326, Federal Reserve Bank of New York.
    4. Bierens, Herman J. & Martins, Luis F., 2010. "Time-Varying Cointegration," Econometric Theory, Cambridge University Press, vol. 26(5), pages 1453-1490, October.
    5. Chikuse, Yasuko, 2006. "State space models on special manifolds," Journal of Multivariate Analysis, Elsevier, vol. 97(6), pages 1284-1294, July.
    6. Castle, Jennifer & Shephard, Neil (ed.), 2009. "The Methodology and Practice of Econometrics: A Festschrift in Honour of David F. Hendry," OUP Catalogue, Oxford University Press, number 9780199237197.
    7. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Niko Hauzenberger & Michael Pfarrhofer & Luca Rossini, 2020. "Sparse time-varying parameter VECMs with an application to modeling electricity prices," Papers 2011.04577, arXiv.org, revised Apr 2023.
    2. Yang, Yuhong, 2000. "Combining Different Procedures for Adaptive Regression," Journal of Multivariate Analysis, Elsevier, vol. 74(1), pages 135-161, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    2. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    3. Juan Antolin-Diaz & Thomas Drechsel & Ivan Petrella, 2017. "Tracking the Slowdown in Long-Run GDP Growth," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 343-356, May.
    4. Mikkelsen, Jakob Guldbæk & Hillebrand, Eric & Urga, Giovanni, 2019. "Consistent estimation of time-varying loadings in high-dimensional factor models," Journal of Econometrics, Elsevier, vol. 208(2), pages 535-562.
    5. Eraslan, Sercan & Schröder, Maximilian, 2023. "Nowcasting GDP with a pool of factor models and a fast estimation algorithm," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1460-1476.
    6. Bates, Brandon J. & Plagborg-Møller, Mikkel & Stock, James H. & Watson, Mark W., 2013. "Consistent factor estimation in dynamic factor models with structural instability," Journal of Econometrics, Elsevier, vol. 177(2), pages 289-304.
    7. Luke Hartigan & James Morley, 2020. "A Factor Model Analysis of the Australian Economy and the Effects of Inflation Targeting," The Economic Record, The Economic Society of Australia, vol. 96(314), pages 271-293, September.
    8. Bennedsen, Mikkel & Hillebrand, Eric & Koopman, Siem Jan, 2021. "Modeling, forecasting, and nowcasting U.S. CO2 emissions using many macroeconomic predictors," Energy Economics, Elsevier, vol. 96(C).
    9. Laurent Callot & Johannes Tang Kristensen, 2016. "Regularized Estimation of Structural Instability in Factor Models: The US Macroeconomy and the Great Moderation," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 437-479, Emerald Group Publishing Limited.
    10. Petrella, Ivan & Drechsel, Thomas & Antolin-Diaz, Juan, 2014. "Following the Trend: Tracking GDP when Long-Run Growth is Uncertain," CEPR Discussion Papers 10272, C.E.P.R. Discussion Papers.
    11. Luke Hartigan, 2015. "Changes in the Factor Structure of the U.S. Economy: Permanent Breaks or Business Cycle Regimes?," Discussion Papers 2015-17, School of Economics, The University of New South Wales.
    12. Marczak, Martyna & Proietti, Tommaso, 2016. "Outlier detection in structural time series models: The indicator saturation approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 180-202.
    13. Massacci, Daniele, 2017. "Least squares estimation of large dimensional threshold factor models," Journal of Econometrics, Elsevier, vol. 197(1), pages 101-129.
    14. David de Antonio Liedo, 2014. "Nowcasting Belgium," Working Paper Research 256, National Bank of Belgium.
    15. Andrea Carriero & Francesco Corsello & Massimiliano Marcellino, 2022. "The global component of inflation volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 700-721, June.
    16. Xu Cheng & Zhipeng Liao & Frank Schorfheide, 2016. "Shrinkage Estimation of High-Dimensional Factor Models with Structural Instabilities," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 83(4), pages 1511-1543.
    17. Barigozzi, Matteo & Trapani, Lorenzo, 2020. "Sequential testing for structural stability in approximate factor models," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 5149-5187.
    18. Bai, Jushan & Duan, Jiangtao & Han, Xu, 2024. "The likelihood ratio test for structural changes in factor models," Journal of Econometrics, Elsevier, vol. 238(2).
    19. Krist'of N'emeth & D'aniel Hadh'azi, 2024. "Generating density nowcasts for U.S. GDP growth with deep learning: Bayes by Backprop and Monte Carlo dropout," Papers 2405.15579, arXiv.org.
    20. Raffaella Giacomini & Barbara Rossi, 2015. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 207-229, August.

    More about this item

    Keywords

    state-space models; Stiefel manifold; matrix Langevin distribution; filtering; smoothing; Laplace method; dynamic factor model; cointegration;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:6:y:2018:i:4:p:48-:d:190086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.