Realized Volatility Forecasting with Neural Networks
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Andrea Bucci, 0. "Realized Volatility Forecasting with Neural Networks," Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 502-531.
- Andrea Bucci, 2020. "Realized Volatility Forecasting with Neural Networks," Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 502-531.
References listed on IDEAS
- Ivo Welch & Amit Goyal, 2008.
"A Comprehensive Look at The Empirical Performance of Equity Premium Prediction,"
The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
- Amit Goyal & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," Yale School of Management Working Papers amz2412, Yale School of Management, revised 01 Jan 2006.
- Amit Goyal & Ivo Welch & Athanasse Zafirov, 2021. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction II," Swiss Finance Institute Research Paper Series 21-85, Swiss Finance Institute.
- Amit Goval & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," NBER Working Papers 10483, National Bureau of Economic Research, Inc.
- Donaldson, R. Glen & Kamstra, Mark, 1997. "An artificial neural network-GARCH model for international stock return volatility," Journal of Empirical Finance, Elsevier, vol. 4(1), pages 17-46, January.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2011.
"The Model Confidence Set,"
Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2010. "The Model Confidence Set," CREATES Research Papers 2010-76, Department of Economics and Business Economics, Aarhus University.
- Wei Bao & Jun Yue & Yulei Rao, 2017. "A deep learning framework for financial time series using stacked autoencoders and long-short term memory," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-24, July.
- Choudhry, Taufiq & Papadimitriou, Fotios I. & Shabi, Sarosh, 2016. "Stock market volatility and business cycle: Evidence from linear and nonlinear causality tests," Journal of Banking & Finance, Elsevier, vol. 66(C), pages 89-101.
- Eduardo Rossi & Paolo Santucci de Magistris, 2014.
"Estimation of Long Memory in Integrated Variance,"
Econometric Reviews, Taylor & Francis Journals, vol. 33(7), pages 785-814, October.
- Eduardo Rossi & Paolo Santucci de Magistris, 2011. "Estimation of long memory in integrated variance," CREATES Research Papers 2011-11, Department of Economics and Business Economics, Aarhus University.
- Eduardo Rossi & Paolo Santucci de Magistris, 2012. "Estimation of long memory in integrated variance," DEM Working Papers Series 017, University of Pavia, Department of Economics and Management.
- Charlotte Christiansen & Maik Schmeling & Andreas Schrimpf, 2012.
"A comprehensive look at financial volatility prediction by economic variables,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 956-977, September.
- Charlotte Christiansen & Maik Schmeling & Andreas Schrimpf, 2010. "A Comprehensive Look at Financial Volatility Prediction by Economic Variables," CREATES Research Papers 2010-58, Department of Economics and Business Economics, Aarhus University.
- Charlotte Christiansen & Maik Schmeling & Andreas Schrimpf, 2012. "A Comprehensive Look at Financial Volatility Prediction by Economic Variables," BIS Working Papers 374, Bank for International Settlements.
- Ole E. Barndorff‐Nielsen & Neil Shephard, 2002.
"Econometric analysis of realized volatility and its use in estimating stochastic volatility models,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
- Ole E. Barndorff-Nielsen & Neil Shephard, 2000. "Econometric analysis of realised volatility and its use in estimating stochastic volatility models," Economics Papers 2001-W4, Economics Group, Nuffield College, University of Oxford, revised 05 Jul 2001.
- Neil Shephard & Ole E. Barndorff-Nielsen & University of Aarhus, 2001. "Econometric Analysis of Realised Volatility and Its Use in Estimating Stochastic Volatility Models," Economics Series Working Papers 71, University of Oxford, Department of Economics.
- McAleer, Michael & Medeiros, Marcelo C., 2008.
"A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries,"
Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
- Michael McAller & Marcelo C. Medeiros, 2007. "A multiple regime smooth transition heterogeneous autoregressive model for long memory and asymmetries," Textos para discussão 544, Department of Economics PUC-Rio (Brazil).
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Francis X. Diebold & Kamil Yilmaz, 2009.
"Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets,"
Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
- FrancisX. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
- Francis X. Diebold & Kamil Yılmaz, 2007. "Measuring Financial Asset Return and Volatility Spillovers, With Application to Global Equity Markets," Koç University-TUSIAD Economic Research Forum Working Papers 0705, Koc University-TUSIAD Economic Research Forum.
- Francis X. Diebold & Kamil Yilmaz, 2008. "Measuring Financial Asset Return and Volatility Spillovers, With Application to Global Equity Markets," NBER Working Papers 13811, National Bureau of Economic Research, Inc.
- Francis X. Diebold & Kamil Yilmaz, 2008. "Measuring financial asset return and volatility spillovers, with application to global equity markets," Working Papers 08-16, Federal Reserve Bank of Philadelphia.
- Diebold, Francis X. & Yilmaz, Kamil, 2008. "Measuring financial asset return and volatilty spillovers, with application to global equity markets," CFS Working Paper Series 2008/26, Center for Financial Studies (CFS).
- Francis X. Diebold & Kamil Yilmaz, 2007. "Measuring Financial Asset Return and Volatility Spillovers, With Application to Global Equity Markets," PIER Working Paper Archive 07-002, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Diebold, Francis X. & Yilmaz, Kamil, 2007. "Measuring financial asset return and volatility spillovers, with application to global equity markets," CFS Working Paper Series 2007/02, Center for Financial Studies (CFS).
- Tom Doan, "undated". "RATS programs to replicate Diebold and Yilmaz EJ 2009 spillover calculations," Statistical Software Components RTZ00044, Boston College Department of Economics.
- Leandro Maciel & Fernando Gomide & Rosangela Ballini, 2016.
"Evolving Fuzzy-GARCH Approach for Financial Volatility Modeling and Forecasting,"
Computational Economics, Springer;Society for Computational Economics, vol. 48(3), pages 379-398, October.
- Leandro Maciel & Fernando Gomide & Rosangela Ballini, 2014. "An Evolving Fuzzy-Garch Approach Forfinancial Volatility Modeling And Forecasting," Anais do XL Encontro Nacional de Economia [Proceedings of the 40th Brazilian Economics Meeting] 138, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
- Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
- Patton, Andrew J., 2011.
"Volatility forecast comparison using imperfect volatility proxies,"
Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
- Andrew Patton, 2006. "Volatility Forecast Comparison using Imperfect Volatility Proxies," Research Paper Series 175, Quantitative Finance Research Centre, University of Technology, Sydney.
- Michiel de Pooter & Martin Martens & Dick van Dijk, 2008.
"Predicting the Daily Covariance Matrix for S&P 100 Stocks Using Intraday Data—But Which Frequency to Use?,"
Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 199-229.
- Michiel de Pooter & Martin Martens & Dick van Dijk, 2005. "Predicting the Daily Covariance Matrix for S&P 100 Stocks using Intraday Data - But which Frequency to use?," Tinbergen Institute Discussion Papers 05-089/4, Tinbergen Institute, revised 03 Jan 2006.
- Jushan Bai & Pierre Perron, 2003.
"Computation and analysis of multiple structural change models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
- BAI, Jushan & PERRON, Pierre, 1998. "Computation and Analysis of Multiple Structural-Change Models," Cahiers de recherche 9807, Universite de Montreal, Departement de sciences economiques.
- Tom Doan, "undated". "MULTIPLEBREAKS: RATS procedure to perform multiple structural change analysis," Statistical Software Components RTS00138, Boston College Department of Economics.
- Tom Doan, "undated". "RATS programs to replicate examples of Bai-Perron procedure," Statistical Software Components RTZ00008, Boston College Department of Economics.
- Tom Doan, "undated". "BAIPERRON: RATS procedure to perform Bai-Perron Test for Multiple Structural Changes," Statistical Software Components RTS00013, Boston College Department of Economics.
- Efthymios G. Pavlidis & Ivan Paya & David A. Peel, 2012. "Forecast Evaluation of Nonlinear Models: The Case of Long‐Span Real Exchange Rates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(7), pages 580-595, November.
- Vortelinos, Dimitrios I., 2017. "Forecasting realized volatility: HAR against Principal Components Combining, neural networks and GARCH," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 824-839.
- Ruoxuan Xiong & Eric P. Nichols & Yuan Shen, 2015. "Deep Learning Stock Volatility with Google Domestic Trends," Papers 1512.04916, arXiv.org, revised Feb 2016.
- Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
- Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
- Anders, Ulrich & Korn, Olaf, 1996. "Model selection in neural networks," ZEW Discussion Papers 96-21, ZEW - Leibniz Centre for European Economic Research.
- Fernandes, Marcelo & Medeiros, Marcelo C. & Scharth, Marcel, 2014.
"Modeling and predicting the CBOE market volatility index,"
Journal of Banking & Finance, Elsevier, vol. 40(C), pages 1-10.
- Marcelo Fernandes & Marcelo Cunha Medeiros & MArcelo Scharth, 2007. "Modeling and predicting the CBOE market volatility index," Textos para discussão 548, Department of Economics PUC-Rio (Brazil).
- Fernandes, Marcelo & Medeiros, Marcelo C. & Scharth, Marcel, 2013. "Modeling and predicting the CBOE market volatility index," Textos para discussão 342, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
- John M. Maheu & Thomas H. McCurdy, 2002.
"Nonlinear Features of Realized FX Volatility,"
The Review of Economics and Statistics, MIT Press, vol. 84(4), pages 668-681, November.
- John M. Maheu & Thomas McCurdy, 2001. "Nonlinear Features of Realized FX Volatility," CIRANO Working Papers 2001s-42, CIRANO.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Michael P. Clements & Hans-Martin Krolzig, 1998.
"A comparison of the forecast performance of Markov-switching and threshold autoregressive models of US GNP,"
Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages 47-75.
- Clements, Michael P. & Krolzig, Hans-Martin, 1997. "A Comparison Of The Forecast Performance Of Markov-Switching And Threshold Autoregressive Models Of Us Gnp," Economic Research Papers 268771, University of Warwick - Department of Economics.
- Mele, Antonio, 2007. "Asymmetric stock market volatility and the cyclical behavior of expected returns," Journal of Financial Economics, Elsevier, vol. 86(2), pages 446-478, November.
- Hu, Michael Y. & Tsoukalas, Christos, 1999. "Combining conditional volatility forecasts using neural networks: an application to the EMS exchange rates," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 9(4), pages 407-422, November.
- Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
- Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(3), pages 318-334, September.
- Donaldson, R Glen & Kamstra, Mark, 1996. "A New Dividend Forecasting Procedure That Rejects Bubbles in Asset Prices: The Case of 1929's Stock Crash," The Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 333-383.
- Zaiyong Tang & Paul A. Fishwick, 1993. "Feedforward Neural Nets as Models for Time Series Forecasting," INFORMS Journal on Computing, INFORMS, vol. 5(4), pages 374-385, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Andrea Bucci, 2020.
"Cholesky–ANN models for predicting multivariate realized volatility,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(6), pages 865-876, September.
- Bucci, Andrea, 2019. "Cholesky-ANN models for predicting multivariate realized volatility," MPRA Paper 95137, University Library of Munich, Germany.
- Zhu, Haibin & Bai, Lu & He, Lidan & Liu, Zhi, 2023. "Forecasting realized volatility with machine learning: Panel data perspective," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 251-271.
- Bucci, Andrea & Palomba, Giulio & Rossi, Eduardo, 2023. "The role of uncertainty in forecasting volatility comovements across stock markets," Economic Modelling, Elsevier, vol. 125(C).
- Andrea BUCCI, 2017.
"Forecasting Realized Volatility A Review,"
Journal of Advanced Studies in Finance, ASERS Publishing, vol. 8(2), pages 94-138.
- Bucci, Andrea, 2017. "Forecasting realized volatility: a review," MPRA Paper 83232, University Library of Munich, Germany.
- Andrea Bucci & Giulio Palomba & Eduardo Rossi, 2019. "Does macroeconomics help in predicting stock markets volatility comovements? A nonlinear approach," Working Papers 440, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
- Nonejad, Nima, 2017. "Forecasting aggregate stock market volatility using financial and macroeconomic predictors: Which models forecast best, when and why?," Journal of Empirical Finance, Elsevier, vol. 42(C), pages 131-154.
- Michael McAleer & Marcelo Medeiros, 2008.
"Realized Volatility: A Review,"
Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
- Michael McAleer & Marcelo Cunha Medeiros, 2006. "Realized volatility: a review," Textos para discussão 531 Publication status: F, Department of Economics PUC-Rio (Brazil).
- Wang Pu & Yixiang Chen & Feng Ma, 2016. "Forecasting the realized volatility in the Chinese stock market: further evidence," Applied Economics, Taylor & Francis Journals, vol. 48(33), pages 3116-3130, July.
- Caporin, Massimiliano & Velo, Gabriel G., 2015. "Realized range volatility forecasting: Dynamic features and predictive variables," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 98-112.
- Xue Gong & Weiguo Zhang & Yuan Zhao & Xin Ye, 2023. "Forecasting stock volatility with a large set of predictors: A new forecast combination method," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1622-1647, November.
- Ma, Feng & Wei, Yu & Huang, Dengshi & Chen, Yixiang, 2014. "Which is the better forecasting model? A comparison between HAR-RV and multifractality volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 171-180.
- Audrino, Francesco & Sigrist, Fabio & Ballinari, Daniele, 2020. "The impact of sentiment and attention measures on stock market volatility," International Journal of Forecasting, Elsevier, vol. 36(2), pages 334-357.
- Mittnik, Stefan & Robinzonov, Nikolay & Spindler, Martin, 2015. "Stock market volatility: Identifying major drivers and the nature of their impact," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 1-14.
- Fang, Tong & Lee, Tae-Hwy & Su, Zhi, 2020.
"Predicting the long-term stock market volatility: A GARCH-MIDAS model with variable selection,"
Journal of Empirical Finance, Elsevier, vol. 58(C), pages 36-49.
- Tong Fang & Tae-Hwy Lee & Zhi Su, 2020. "Predicting the Long-term Stock Market Volatility: A GARCH-MIDAS Model with Variable Selection," Working Papers 202009, University of California at Riverside, Department of Economics.
- Michael McAleer & Marcelo C. Medeiros, 2009.
"Forecasting Realized Volatility with Linear and Nonlinear Models,"
CARF F-Series
CARF-F-189, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Michael McAleer & Marcelo C. Medeiros, 2009. "Forecasting Realized Volatility with Linear and Nonlinear Models," CIRJE F-Series CIRJE-F-686, CIRJE, Faculty of Economics, University of Tokyo.
- McAleer, M.J. & Medeiros, M.C., 2009. "Forecasting Realized Volatility with Linear and Nonlinear Models," Econometric Institute Research Papers EI 2009-37, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Michael McAleer & Marcelo Cunha Medeiros, 2010. "Forecasting Realized Volatility with Linear and Nonlinear Models," Textos para discussão 568, Department of Economics PUC-Rio (Brazil).
- Charlotte Christiansen & Maik Schmeling & Andreas Schrimpf, 2012.
"A comprehensive look at financial volatility prediction by economic variables,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 956-977, September.
- Charlotte Christiansen & Maik Schmeling & Andreas Schrimpf, 2010. "A Comprehensive Look at Financial Volatility Prediction by Economic Variables," CREATES Research Papers 2010-58, Department of Economics and Business Economics, Aarhus University.
- Charlotte Christiansen & Maik Schmeling & Andreas Schrimpf, 2012. "A Comprehensive Look at Financial Volatility Prediction by Economic Variables," BIS Working Papers 374, Bank for International Settlements.
- Neil Shephard & Kevin Sheppard, 2010.
"Realising the future: forecasting with high-frequency-based volatility (HEAVY) models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 197-231.
- Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," OFRC Working Papers Series 2009fe02, Oxford Financial Research Centre.
- Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," Economics Papers 2009-W03, Economics Group, Nuffield College, University of Oxford.
- Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," Economics Series Working Papers 438, University of Oxford, Department of Economics.
- Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023.
"The contribution of jump signs and activity to forecasting stock price volatility,"
Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
- , 2019. "The Contribution of Jump Signs and Activity to Forecasting Stock Price Volatility," Working Papers 1902, Federal Reserve Bank of Dallas, revised 17 Dec 2022.
- Ruijun Bu & Rodrigo Hizmeri & Marwan Izzeldin & Anthony Murphy & Mike G. Tsionas, 2021. "The Contribution of Jump Signs and Activity to Forecasting Stock Price Volatility," Working Papers 202109, University of Liverpool, Department of Economics.
- Gloria González-Rivera & Tae-Hwy Lee, 2007. "Nonlinear Time Series in Financial Forecasting," Working Papers 200803, University of California at Riverside, Department of Economics, revised Feb 2008.
- Douglas G. Santos & Flavio A. Ziegelmann, 2014. "Volatility Forecasting via MIDAS, HAR and their Combination: An Empirical Comparative Study for IBOVESPA," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(4), pages 284-299, July.
More about this item
Keywords
Neural Networks; Realized Volatility; Forecast;All these keywords.
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2019-08-26 (Big Data)
- NEP-CMP-2019-08-26 (Computational Economics)
- NEP-ETS-2019-08-26 (Econometric Time Series)
- NEP-FOR-2019-08-26 (Forecasting)
- NEP-ORE-2019-08-26 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:95443. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.