IDEAS home Printed from https://ideas.repec.org/p/rtv/ceisrp/325.html
   My bibliography  Save this paper

Outlier Detection in Structural Time Series Models: the Indicator Saturation Approach

Author

Listed:

Abstract

Structural change affects the estimation of economic signals, like the underlying growth rate or the seasonally adjusted series. An important issue, which has attracted a great deal of attention also in the seasonal adjustment literature, is its detection by an expert procedure. The general–to–specific approach to the detection of structural change, currently implemented in Autometrics via indicator saturation, has proven to be both practical and effective in the context of stationary dynamic regression models and unit–root autoregressions. By focusing on impulse–and step–indicator saturation, we investigate via Monte Carlo simulations how this approach performs for detecting additive outliers and level shifts in the analysis of nonstationary seasonal time series. The reference model is the basic structural model, featuring a local linear trend, possibly integrated of order two, stochastic seasonality and a stationary component. Further, we apply both kinds of indicator saturation to detect additive outliers and level shifts in the industrial production series in five European countries.

Suggested Citation

  • Martyna Marczak & Tommaso Proietti, 2014. "Outlier Detection in Structural Time Series Models: the Indicator Saturation Approach," CEIS Research Paper 325, Tor Vergata University, CEIS, revised 08 Aug 2014.
  • Handle: RePEc:rtv:ceisrp:325
    as

    Download full text from publisher

    File URL: https://ceistorvergata.it/RePEc/rpaper/RP325.pdf
    File Function: Main text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Atkinson, A. C. & Koopman, S. J. & Shephard, N., 1997. "Detecting shocks: Outliers and breaks in time series," Journal of Econometrics, Elsevier, vol. 80(2), pages 387-422, October.
    2. Castle, Jennifer L. & Doornik, Jurgen A. & Hendry, David F., 2012. "Model selection when there are multiple breaks," Journal of Econometrics, Elsevier, vol. 169(2), pages 239-246.
    3. Marczak, Martyna & Proietti, Tommaso, 2016. "Outlier detection in structural time series models: The indicator saturation approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 180-202.
    4. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    5. Victor Gómez & Agustín Maravall, 1996. "Programs TRAMO and SEATS, Instruction for User (Beta Version: september 1996)," Working Papers 9628, Banco de España.
    6. Chao, John & Corradi, Valentina & Swanson, Norman R., 2001. "Out-Of-Sample Tests For Granger Causality," Macroeconomic Dynamics, Cambridge University Press, vol. 5(4), pages 598-620, September.
    7. David Hendry & Jurgen A. Doornik & Felix Pretis, 2013. "Step-indicator Saturation," Economics Series Working Papers 658, University of Oxford, Department of Economics.
    8. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
    9. Ashley, R & Granger, C W J & Schmalensee, R, 1980. "Advertising and Aggregate Consumption: An Analysis of Causality," Econometrica, Econometric Society, vol. 48(5), pages 1149-1167, July.
    10. Peng Nie & Alfonso Sousa-Poza, 2014. "Maternal employment and childhood obesity in China: evidence from the China Health and Nutrition Survey," Applied Economics, Taylor & Francis Journals, vol. 46(20), pages 2418-2428, July.
    11. Carlos Santos & David Hendry & Soren Johansen, 2008. "Automatic selection of indicators in a fully saturated regression," Computational Statistics, Springer, vol. 23(2), pages 317-335, April.
    12. Steffen Otterbach & Alfonso Sousa-Poza, 2016. "Job insecurity, employability and health: an analysis for Germany across generations," Applied Economics, Taylor & Francis Journals, vol. 48(14), pages 1303-1316, March.
    13. McCracken, Michael W., 2007. "Asymptotics for out of sample tests of Granger causality," Journal of Econometrics, Elsevier, vol. 140(2), pages 719-752, October.
    14. Neil Ericsson & Erica Reisman, 2012. "Evaluating a Global Vector Autoregression for Forecasting," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 18(3), pages 247-258, August.
    15. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    16. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    17. N. G. Shephard & A. C. Harvey, 1990. "On The Probability Of Estimating A Deterministic Component In The Local Level Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 11(4), pages 339-347, July.
    18. David F. Hendry & Felix Pretis, 2013. "Anthropogenic influences on atmospheric CO2," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 12, pages 287-326, Edward Elgar Publishing.
    19. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    20. Hendry David F & Mizon Grayham E, 2011. "Econometric Modelling of Time Series with Outlying Observations," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-26, February.
    21. Roger Fouquet (ed.), 2013. "Handbook on Energy and Climate Change," Books, Edward Elgar Publishing, number 14429.
    22. Clements, Michael P. & Hendry, David F. (ed.), 2011. "The Oxford Handbook of Economic Forecasting," OUP Catalogue, Oxford University Press, number 9780195398649.
    23. David Hendry & Carlos Santos, 2010. "An Automatic Test of Super Exogeneity," Economics Series Working Papers 476, University of Oxford, Department of Economics.
    24. Harvey, A C & Todd, P H J, 1983. "Forecasting Economic Time Series with Structural and Box-Jenkins Models: A Case Study," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(4), pages 299-307, October.
    25. Harvey, Andrew C & Koopman, Siem Jan, 1992. "Diagnostic Checking of Unobserved-Components Time Series Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 377-389, October.
    26. Castle, Jennifer & Shephard, Neil (ed.), 2009. "The Methodology and Practice of Econometrics: A Festschrift in Honour of David F. Hendry," OUP Catalogue, Oxford University Press, number 9780199237197.
    27. Harvey, A C & Todd, P H J, 1983. "Forecasting Economic Time Series with Structural and Box-Jenkins Models: A Case Study: Response," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(4), pages 313-315, October.
    28. Chen, Chung & Tiao, George C, 1990. "Random Level-Shift Time Series Models, ARIMA Approximations, and Level-Shift Detection," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(1), pages 83-97, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun, Bogang, 2013. "The Trade-off between Fertility and Education: Evidence from the Korean Development Path," MPRA Paper 43971, University Library of Munich, Germany.
    2. Marczak, Martyna & Proietti, Tommaso, 2016. "Outlier detection in structural time series models: The indicator saturation approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 180-202.
    3. Neil R. Ericsson & Mohammed H. I. Dore & Hassan Butt, 2022. "Detecting and Quantifying Structural Breaks in Climate," Econometrics, MDPI, vol. 10(4), pages 1-27, November.
    4. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    5. Apergis, Nicholas & Pan, Wei-Fong & Reade, James & Wang, Shixuan, 2023. "Modelling Australian electricity prices using indicator saturation," Energy Economics, Elsevier, vol. 120(C).
    6. Ericsson, Neil R., 2017. "How biased are U.S. government forecasts of the federal debt?," International Journal of Forecasting, Elsevier, vol. 33(2), pages 543-559.
    7. Marcin Błażejowski & Jacek Kwiatkowski & Paweł Kufel, 2020. "BACE and BMA Variable Selection and Forecasting for UK Money Demand and Inflation with Gretl," Econometrics, MDPI, vol. 8(2), pages 1-29, May.
    8. Marczak, Martyna & Proietti, Tommaso & Grassi, Stefano, 2018. "A data-cleaning augmented Kalman filter for robust estimation of state space models," Econometrics and Statistics, Elsevier, vol. 5(C), pages 107-123.
    9. Byers, J.W. & Popova, I. & Simkins, B.J., 2021. "Robust estimation of conditional risk measures using machine learning algorithm for commodity futures prices in the presence of outliers," Journal of Commodity Markets, Elsevier, vol. 24(C).
    10. Ruqayya Aljifri, 2020. "The Macroeconomy, Oil and the Stock Market: A Multiple Equation Time Series Analysis of Saudi Arabia," Economics Discussion Papers em-dp2020-27, Department of Economics, University of Reading.
    11. Proietti, Tommaso & Pedregal, Diego J., 2023. "Seasonality in High Frequency Time Series," Econometrics and Statistics, Elsevier, vol. 27(C), pages 62-82.
    12. Kaufmann, Robert K. & Schroer, Colter, 2023. "Social and environmental events disrupt the relation between motor gasoline prices and market fundamentals," Energy Economics, Elsevier, vol. 126(C).
    13. Ericsson, Neil R., 2017. "Interpreting estimates of forecast bias," International Journal of Forecasting, Elsevier, vol. 33(2), pages 563-568.
    14. G. Rigatos, 2021. "Statistical Validation of Multi-Agent Financial Models Using the H-Infinity Kalman Filter," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 777-798, October.
    15. Kaufmann, Robert K., 2023. "Energy price volatility affects decisions to purchase energy using capital: Motor vehicles," Energy Economics, Elsevier, vol. 126(C).
    16. Ericsson Neil R., 2016. "Testing for and estimating structural breaks and other nonlinearities in a dynamic monetary sector," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(4), pages 377-398, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ericsson, Neil R., 2017. "How biased are U.S. government forecasts of the federal debt?," International Journal of Forecasting, Elsevier, vol. 33(2), pages 543-559.
    2. Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry & Felix Pretis, 2015. "Detecting Location Shifts during Model Selection by Step-Indicator Saturation," Econometrics, MDPI, vol. 3(2), pages 1-25, April.
    3. Granziera, Eleonora & Hubrich, Kirstin & Moon, Hyungsik Roger, 2014. "A predictability test for a small number of nested models," Journal of Econometrics, Elsevier, vol. 182(1), pages 174-185.
    4. Ericsson, Neil R., 2016. "Eliciting GDP forecasts from the FOMC’s minutes around the financial crisis," International Journal of Forecasting, Elsevier, vol. 32(2), pages 571-583.
    5. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    6. Atsushi Inoue & Lutz Kilian, 2005. "In-Sample or Out-of-Sample Tests of Predictability: Which One Should We Use?," Econometric Reviews, Taylor & Francis Journals, vol. 23(4), pages 371-402.
    7. West, Kenneth D., 2006. "Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 3, pages 99-134, Elsevier.
    8. Clark, Todd & McCracken, Michael, 2013. "Advances in Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1107-1201, Elsevier.
    9. Todd E. Clark & Kenneth D. West, 2005. "Using Out-of-Sample Mean Squared Prediction Errors to Test the Martingale Difference," NBER Technical Working Papers 0305, National Bureau of Economic Research, Inc.
    10. Brooks, Chris & Burke, Simon P. & Stanescu, Silvia, 2016. "Finite sample weighting of recursive forecast errors," International Journal of Forecasting, Elsevier, vol. 32(2), pages 458-474.
    11. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    12. Busetti, Fabio & Marcucci, Juri, 2013. "Comparing forecast accuracy: A Monte Carlo investigation," International Journal of Forecasting, Elsevier, vol. 29(1), pages 13-27.
    13. Todd E. Clark, 2004. "Can out-of-sample forecast comparisons help prevent overfitting?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(2), pages 115-139.
    14. David F. Hendry & Felix Pretis, 2013. "Anthropogenic influences on atmospheric CO2," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 12, pages 287-326, Edward Elgar Publishing.
    15. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    16. Clark, Todd E. & West, Kenneth D., 2006. "Using out-of-sample mean squared prediction errors to test the martingale difference hypothesis," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 155-186.
    17. Neil R. Ericsson, 2021. "Dynamic Econometrics in Action: A Biography of David F. Hendry," International Finance Discussion Papers 1311, Board of Governors of the Federal Reserve System (U.S.).
    18. Corradi, Valentina & Swanson, Norman R., 2004. "Some recent developments in predictive accuracy testing with nested models and (generic) nonlinear alternatives," International Journal of Forecasting, Elsevier, vol. 20(2), pages 185-199.
    19. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    20. Kenneth S. Rogoff & Vania Stavrakeva, 2008. "The Continuing Puzzle of Short Horizon Exchange Rate Forecasting," NBER Working Papers 14071, National Bureau of Economic Research, Inc.

    More about this item

    Keywords

    Indicator saturation; seasonal adjustment; structural time series model; outliers; structural change; general–to–specific approach; state space model;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rtv:ceisrp:325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Barbara Piazzi (email available below). General contact details of provider: https://edirc.repec.org/data/csrotit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.