IDEAS home Printed from https://ideas.repec.org/p/uts/rpaper/76.html
   My bibliography  Save this paper

A Score Test for Discreteness in GARCH Models

Author

Listed:
  • Henrik Amilon

Abstract

The standard continuous-state GARCH model is misspecified if applied to returns calculated from discrete price series. We propose a modiÞcation of the above model for handling such cases, by modeling the dependent variable as an unobservable stochastic variable with certain observed outcomes. We further construct a score test that can be used to check if the proposed model differ significantly from the one we would have if all variables were observed, i.e. an underlying latent GARCH model. Using price data from some Australian stocks with high tick size to price ratios, we find the important result that in no case does the proposed model differ significantly from an unobservable continuous-state GARCH model.

Suggested Citation

  • Henrik Amilon, 2002. "A Score Test for Discreteness in GARCH Models," Research Paper Series 76, Quantitative Finance Research Centre, University of Technology, Sydney.
  • Handle: RePEc:uts:rpaper:76
    as

    Download full text from publisher

    File URL: http://www.qfrc.uts.edu.au/research/research_papers/rp76_v3.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Szpiro, George G., 1998. "Tick size, the compass rose and market nanostructure," Journal of Banking & Finance, Elsevier, vol. 22(12), pages 1559-1569, December.
    2. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038, Elsevier.
    3. Goffe, William L. & Ferrier, Gary D. & Rogers, John, 1994. "Global optimization of statistical functions with simulated annealing," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 65-99.
    4. Joel Hasbrouck, 1999. "The Dynamics of Discrete Bid and Ask Quotes," Journal of Finance, American Finance Association, vol. 54(6), pages 2109-2142, December.
    5. Jurgen A. Doornik & Marius Ooms, 2000. "Multimodality and the GARCH Likelihood," Econometric Society World Congress 2000 Contributed Papers 0798, Econometric Society.
    6. Tina Hviid Rydberg & Neil Shephard, 2003. "Dynamics of Trade-by-Trade Price Movements: Decomposition and Models," Journal of Financial Econometrics, Oxford University Press, vol. 1(1), pages 2-25.
    7. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    8. Brock, W.A. & Dechert, W.D. & LeBaron, B. & Scheinkman, J.A., 1995. "A Test for Independence Based on the Correlation Dimension," Working papers 9520, Wisconsin Madison - Social Systems.
    9. Gourieroux, Christian & Monfort, Alain & Renault, Eric & Trognon, Alain, 1987. "Generalised residuals," Journal of Econometrics, Elsevier, vol. 34(1-2), pages 5-32.
    10. Brooks, Robert D. & Faff, Robert W. & Fry, Tim R. L., 2001. "GARCH modelling of individual stock data: the impact of censoring, firm size and trading volume," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 11(2), pages 215-222, June.
    11. M. F. Omran & E. McKenzie, 2000. "Heteroscedasticity in stock returns data revisited: volume versus GARCH effects," Applied Financial Economics, Taylor & Francis Journals, vol. 10(5), pages 553-560.
    12. Gourieroux, C. & Monfort, A. & Trognon, A., 1985. "A General Approach to Serial Correlation," Econometric Theory, Cambridge University Press, vol. 1(3), pages 315-340, December.
    13. Morgan, I G & Trevor, R G, 1999. "Limit Moves as Censored Observations of Equilibrium Futures Price in GARCH Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(4), pages 397-408, October.
    14. Crack, Timothy Falcon & Ledoit, Olivier, 1996. "Robust Structure without Predictability: The "Compass Rose" Pattern of the Stock Market," Journal of Finance, American Finance Association, vol. 51(2), pages 751-762, June.
    15. Lange, Stephen, 1999. "Modeling asset market volatility in a small market:: Accounting for non-synchronous trading effects," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 9(1), pages 1-18, January.
    16. McKenzie, Michael D. & Brooks, Robert D. & Faff, Robert W. & Ho, Yew Kee, 2000. "Exploring the economic rationale of extremes in GARCH generated betas The case of U.S. banks," The Quarterly Review of Economics and Finance, Elsevier, vol. 40(1), pages 85-106.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amilon, Henrik, 2003. "GARCH estimation and discrete stock prices: an application to low-priced Australian stocks," Economics Letters, Elsevier, vol. 81(2), pages 215-222, November.
    2. Gabriele Fiorentini & Enrique Sentana & Neil Shephard, 2004. "Likelihood-Based Estimation of Latent Generalized ARCH Structures," Econometrica, Econometric Society, vol. 72(5), pages 1481-1517, September.
    3. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    4. Laurini, Márcio Poletti & Portugal, Marcelo Savino, 2004. "Long memory in the R$ / US$ exchange rate: A robust analysis," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 24(1), May.
    5. Giuseppe Buccheri & Stefano Grassi & Giorgio Vocalelli, 2021. "Estimating Risk in Illiquid Markets: a Model of Market Friction with Stochastic Volatility," CEIS Research Paper 506, Tor Vergata University, CEIS, revised 08 Nov 2021.
    6. Fang, Yue, 2002. "The compass rose and random walk tests," Computational Statistics & Data Analysis, Elsevier, vol. 39(3), pages 299-310, May.
    7. Antonios Antoniou & Constantinos E. Vorlow, 2004. "Price Clustering and Discreteness: Is there Chaos behind the Noise?," Papers cond-mat/0407471, arXiv.org.
    8. Omid Sabbaghi & Navid Sabbaghi, 2014. "An empirical analysis of the Carbon Financial Instrument," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 38(2), pages 209-234, April.
    9. Sabbaghi, Omid & Sabbaghi, Navid, 2011. "Carbon Financial Instruments, thin trading, and volatility: Evidence from the Chicago Climate Exchange," The Quarterly Review of Economics and Finance, Elsevier, vol. 51(4), pages 399-407.
    10. Theodore Panagiotidis, 2010. "Market efficiency and the Euro: the case of the Athens stock exchange," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 37(3), pages 237-251, July.
    11. Emma Iglesias & Jean Marie Dufour, 2004. "Finite Sample and Optimal Inference in Possibly Nonstationary ARCH Models with Gaussian and Heavy-Tailed Errors," Econometric Society 2004 North American Summer Meetings 161, Econometric Society.
    12. Don U. A. Galagedera & Robert Faff, 2005. "Modeling The Risk And Return Relation Conditional On Market Volatility And Market Conditions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 75-95.
    13. Catherine Kyrtsou & Michel Terraza, 2003. "Is it Possible to Study Chaotic and ARCH Behaviour Jointly? Application of a Noisy Mackey–Glass Equation with Heteroskedastic Errors to the Paris Stock Exchange Returns Series," Computational Economics, Springer;Society for Computational Economics, vol. 21(3), pages 257-276, June.
    14. Katarzyna Bien & Ingmar Nolte & Winfried Pohlmeier, 2008. "A multivariate integer count hurdle model: theory and application to exchange rate dynamics," Studies in Empirical Economics, in: Luc Bauwens & Winfried Pohlmeier & David Veredas (ed.), High Frequency Financial Econometrics, pages 31-48, Springer.
    15. Siem Jan Koopman & Eugenie Hol Uspensky, 2002. "The stochastic volatility in mean model: empirical evidence from international stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 667-689.
    16. Jose A. Lopez & Christian Walter, 1997. "Is implied correlation worth calculating? Evidence from foreign exchange options and historical data," Research Paper 9730, Federal Reserve Bank of New York.
    17. F. Fornari & A. Mele, 1998. "ARCH Models and Option Pricing : The Continuous Time Connection," THEMA Working Papers 98-30, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    18. Amilon, Henrik, 2008. "Estimation of an adaptive stock market model with heterogeneous agents," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 342-362, March.
    19. Issler, João Victor, 1999. "Estimating and forecasting the volatility of Brazilian finance series using arch models (Preliminary Version)," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 347, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    20. David McMillan & Alan Speight, 2006. "Heterogeneous information flows and intra-day volatility dynamics: evidence from the UK FTSE-100 stock index futures market," Applied Financial Economics, Taylor & Francis Journals, vol. 16(13), pages 959-972.

    More about this item

    Keywords

    GARCH; latent variables; generalized residuals; score test;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Duncan Ford (email available below). General contact details of provider: https://edirc.repec.org/data/qfutsau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.