IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1506.01477.html
   My bibliography  Save this paper

Local risk-minimization for Barndorff-Nielsen and Shephard models with volatility risk premium

Author

Listed:
  • Takuji Arai

Abstract

We derive representations of local risk-minimization of call and put options for Barndorff-Nielsen and Shephard models: jump type stochastic volatility models whose squared volatility process is given by a non-Gaussian rnstein-Uhlenbeck process. The general form of Barndorff-Nielsen and Shephard models includes two parameters: volatility risk premium $\beta$ and leverage effect $\rho$. Arai and Suzuki (2015, arxiv:1503.08589) dealt with the same problem under constraint $\beta=-\frac{1}{2}$. In this paper, we relax the restriction on $\beta$; and restrict $\rho$ to $0$ instead. We introduce a Malliavin calculus under the minimal martingale measure to solve the problem.

Suggested Citation

  • Takuji Arai, 2015. "Local risk-minimization for Barndorff-Nielsen and Shephard models with volatility risk premium," Papers 1506.01477, arXiv.org.
  • Handle: RePEc:arx:papers:1506.01477
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1506.01477
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jouini,E. & Cvitanic,J. & Musiela,Marek (ed.), 2001. "Handbooks in Mathematical Finance," Cambridge Books, Cambridge University Press, number 9780521792370, September.
    2. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takuji Arai & Yuto Imai & Ryoichi Suzuki, 2017. "Local risk-minimization for Barndorff-Nielsen and Shephard models," Finance and Stochastics, Springer, vol. 21(2), pages 551-592, April.
    2. Takuji Arai & Ryoichi Suzuki, 2015. "Local risk-minimization for Barndorff-Nielsen and Shephard models," Keio-IES Discussion Paper Series 2015-003, Institute for Economics Studies, Keio University.
    3. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    4. Takuji Arai & Yuto Imai & Ryoichi Suzuki, 2015. "Local risk-minimization for Barndorff-Nielsen and Shephard models," Papers 1503.08589, arXiv.org, revised Jan 2016.
    5. Thomas Gkelsinis & Alex Karagrigoriou, 2020. "Theoretical Aspects on Measures of Directed Information with Simulations," Mathematics, MDPI, vol. 8(4), pages 1-13, April.
    6. Madan, Dilip B. & Wang, King, 2021. "The structure of financial returns," Finance Research Letters, Elsevier, vol. 40(C).
    7. Long, Hongwei & Ma, Chunhua & Shimizu, Yasutaka, 2017. "Least squares estimators for stochastic differential equations driven by small Lévy noises," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1475-1495.
    8. Dimitrios D. Thomakos & Michail S. Koubouros, 2011. "The Role of Realised Volatility in the Athens Stock Exchange," Multinational Finance Journal, Multinational Finance Journal, vol. 15(1-2), pages 87-124, March - J.
    9. Taufer, Emanuele & Leonenko, Nikolai, 2009. "Simulation of Lvy-driven Ornstein-Uhlenbeck processes with given marginal distribution," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2427-2437, April.
    10. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.
    11. Vladimir Tsenkov, 2009. "Financial Markets Modelling," Economic Thought journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 87-96.
    12. Lars Stentoft, 2008. "American Option Pricing Using GARCH Models and the Normal Inverse Gaussian Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 540-582, Fall.
    13. Fred Espen Benth & Martin Groth & Rodwell Kufakunesu, 2007. "Valuing Volatility and Variance Swaps for a Non-Gaussian Ornstein-Uhlenbeck Stochastic Volatility Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(4), pages 347-363.
    14. Torben G. ANDERSEN & Tim BOLLERSLEV & Nour MEDDAHI, 2002. "Correcting The Errors : A Note On Volatility Forecast Evaluation Based On High-Frequency Data And Realized Volatilities," Cahiers de recherche 21-2002, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    15. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
    16. Audrino, Francesco & Corsi, Fulvio, 2010. "Modeling tick-by-tick realized correlations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2372-2382, November.
    17. Paolo Guasoni & Eberhard Mayerhofer, 2020. "Technical Note—Options Portfolio Selection," Operations Research, INFORMS, vol. 68(3), pages 733-740, May.
    18. Julie Lyng Forman & Michael Sørensen, 2008. "The Pearson Diffusions: A Class of Statistically Tractable Diffusion Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 438-465, September.
    19. Gonzalez, Jhonny & Moriarty, John & Palczewski, Jan, 2017. "Bayesian calibration and number of jump components in electricity spot price models," Energy Economics, Elsevier, vol. 65(C), pages 375-388.
    20. Till Massing, 2018. "Simulation of Student–Lévy processes using series representations," Computational Statistics, Springer, vol. 33(4), pages 1649-1685, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1506.01477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.