IDEAS home Printed from https://ideas.repec.org/a/pal/risman/v22y2020i1d10.1057_s41283-019-00054-y.html
   My bibliography  Save this article

Another look at the implied and realised volatility relation: a copula-based approach

Author

Listed:
  • Jorge V. Pérez-Rodríguez

    (University of Las Palmas de Gran Canaria)

Abstract

The main aim of this paper is to obtain a direct measure of the relation between the future and implied volatilities, in order to determine the appropriateness of using linear modelling to establish the implied–realised volatility relation. To achieve this aim, the dependence structure for implied and realised volatilities is modelled using bivariate standard copulas. Dependence parameters are estimated using a semiparametric method and by reference to three databases corresponding to different assets and frequencies. Two of these databases have been employed in previous research, and the third was constructed specifically for the present study. The first two databases span periods of major crises during the 1980s and 1990s, while the third contains data corresponding to the 2007 financial and economic crisis. The empirical evidence obtained shows that the dependence coefficient is always positive and constant over time, as expected. However, the influence of extreme-volatility events should be taken into account when the data present significant asymmetric tail dependence; models that impose symmetry underestimate the conditional expectation in extreme tail events. Therefore, it might be preferable to model nonlinear conditional expectations to forecast the realised volatility, using implied volatility as a predictor, as is the case with copula models and neural networks.

Suggested Citation

  • Jorge V. Pérez-Rodríguez, 2020. "Another look at the implied and realised volatility relation: a copula-based approach," Risk Management, Palgrave Macmillan, vol. 22(1), pages 38-64, March.
  • Handle: RePEc:pal:risman:v:22:y:2020:i:1:d:10.1057_s41283-019-00054-y
    DOI: 10.1057/s41283-019-00054-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41283-019-00054-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1057/s41283-019-00054-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu Yang & Shigeyuki Hamori, 2013. "Dependence structure among international stock markets: a GARCH--copula analysis," Applied Financial Economics, Taylor & Francis Journals, vol. 23(23), pages 1805-1817, December.
    2. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    3. Chen, Xiaohong & Fan, Yanqin, 2006. "Estimation of copula-based semiparametric time series models," Journal of Econometrics, Elsevier, vol. 130(2), pages 307-335, February.
    4. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous‐time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323, October.
    5. Della Corte, Pasquale & Sarno, Lucio & Tsiakas, Ilias, 2011. "Spot and forward volatility in foreign exchange," Journal of Financial Economics, Elsevier, vol. 100(3), pages 496-513, June.
    6. Pong, Shiuyan & Shackleton, Mark B. & Taylor, Stephen J. & Xu, Xinzhong, 2004. "Forecasting currency volatility: A comparison of implied volatilities and AR(FI)MA models," Journal of Banking & Finance, Elsevier, vol. 28(10), pages 2541-2563, October.
    7. Anupam Dutta, 2017. "Modeling and forecasting oil price risk: the role of implied volatility index," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 44(6), pages 1003-1016, November.
    8. Morten Ørregaard Nielsen & Per Frederiksen, 2011. "Fully modified narrow‐band least squares estimation of weak fractional cointegration," Econometrics Journal, Royal Economic Society, vol. 14, pages 77-120, February.
    9. François Longin & Bruno Solnik, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, April.
    10. Joe, Harry & Li, Haijun & Nikoloulopoulos, Aristidis K., 2010. "Tail dependence functions and vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 252-270, January.
    11. Peter Christoffersen & Stefano Mazzotta, 2005. "The Accuracy of Density Forecasts from Foreign Exchange Options," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 578-605.
    12. Szakmary, Andrew & Ors, Evren & Kyoung Kim, Jin & Davidson, Wallace III, 2003. "The predictive power of implied volatility: Evidence from 35 futures markets," Journal of Banking & Finance, Elsevier, vol. 27(11), pages 2151-2175, November.
    13. Federico M. Bandi & Benoit Perron, 2006. "Long Memory and the Relation Between Implied and Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 4(4), pages 636-670.
    14. Dunis, Christian & Kellard, Neil M. & Snaith, Stuart, 2013. "Forecasting EUR–USD implied volatility: The case of intraday data," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 4943-4957.
    15. Kellard, Neil & Dunis, Christian & Sarantis, Nicholas, 2010. "Foreign exchange, fractional cointegration and the implied-realized volatility relation," Journal of Banking & Finance, Elsevier, vol. 34(4), pages 882-891, April.
    16. Jooyoung Jeon & James W. Taylor, 2013. "Using CAViaR Models with Implied Volatility for Value‐at‐Risk Estimation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(1), pages 62-74, January.
    17. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    18. Haugom, Erik & Langeland, Henrik & Molnár, Peter & Westgaard, Sjur, 2014. "Forecasting volatility of the U.S. oil market," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 1-14.
    19. Edward Frees & Ping Wang, 2005. "Credibility Using Copulas," North American Actuarial Journal, Taylor & Francis Journals, vol. 9(2), pages 31-48.
    20. Eric Bouye & Mark Salmon, 2009. "Dynamic copula quantile regressions and tail area dynamic dependence in Forex markets," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 721-750.
    21. Joe, Harry, 2005. "Asymptotic efficiency of the two-stage estimation method for copula-based models," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 401-419, June.
    22. Umberto Cherubini & Elisa Luciano, 2001. "Value-at-risk Trade-off and Capital Allocation with Copulas," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 30(2), pages 235-256, July.
    23. Busch, Thomas & Christensen, Bent Jesper & Nielsen, Morten Ørregaard, 2011. "The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets," Journal of Econometrics, Elsevier, vol. 160(1), pages 48-57, January.
    24. Ang, Andrew & Chen, Joseph, 2002. "Asymmetric correlations of equity portfolios," Journal of Financial Economics, Elsevier, vol. 63(3), pages 443-494, March.
    25. Edward Frees & Emiliano Valdez, 1998. "Understanding Relationships Using Copulas," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 1-25.
    26. Bouri, Elie & Jalkh, Naji, 2019. "Conditional quantiles and tail dependence in the volatilities of gold and silver," International Economics, Elsevier, vol. 157(C), pages 117-133.
    27. E. C. Brechmann & M. Heiden & Y. Okhrin, 2018. "A multivariate volatility vine copula model," Econometric Reviews, Taylor & Francis Journals, vol. 37(4), pages 281-308, April.
    28. Andrew J. Patton, 2006. "Estimation of multivariate models for time series of possibly different lengths," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(2), pages 147-173, March.
    29. Canina, Linda & Figlewski, Stephen, 1993. "The Informational Content of Implied Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 659-681.
    30. Luo, Xingguo & Qin, Shihua & Ye, Zinan, 2016. "The information content of implied volatility and jumps in forecasting volatility: Evidence from the Shanghai gold futures market," Finance Research Letters, Elsevier, vol. 19(C), pages 105-111.
    31. GIOT, Pierre, 2005. "Implied volatility indexes and daily Value at Risk models," LIDAM Reprints CORE 1840, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    32. Beatriz Vaz de Melo Mendes & Victor Bello Accioly, 2014. "Robust pair‐copula based forecasts of realized volatility," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 30(2), pages 183-199, March.
    33. Lamoureux, Christopher G & Lastrapes, William D, 1993. "Forecasting Stock-Return Variance: Toward an Understanding of Stochastic Implied Volatilities," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 293-326.
    34. Wu, Chih-Chiang & Chung, Huimin & Chang, Yu-Hsien, 2012. "The economic value of co-movement between oil price and exchange rate using copula-based GARCH models," Energy Economics, Elsevier, vol. 34(1), pages 270-282.
    35. Michael McAleer & Marcelo C. Medeiros, 2011. "Forecasting Realized Volatility With Linear And Nonlinear Univariate Models," Journal of Economic Surveys, Wiley Blackwell, vol. 25(1), pages 6-18, February.
    36. Murray D. Smith, 2008. "Stochastic frontier models with dependent error components," Econometrics Journal, Royal Economic Society, vol. 11(1), pages 172-192, March.
    37. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise," Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
    38. Jorion, Philippe, 1995. "Predicting Volatility in the Foreign Exchange Market," Journal of Finance, American Finance Association, vol. 50(2), pages 507-528, June.
    39. Rossi, Eduardo & Santucci de Magistris, Paolo, 2013. "Long memory and tail dependence in trading volume and volatility," Journal of Empirical Finance, Elsevier, vol. 22(C), pages 94-112.
    40. Dias, Alexandra & Embrechts, Paul, 2010. "Modeling exchange rate dependence dynamics at different time horizons," Journal of International Money and Finance, Elsevier, vol. 29(8), pages 1687-1705, December.
    41. Karmakar, Madhusudan & Paul, Samit, 2019. "Intraday portfolio risk management using VaR and CVaR:A CGARCH-EVT-Copula approach," International Journal of Forecasting, Elsevier, vol. 35(2), pages 699-709.
    42. Blair, Bevan J. & Poon, Ser-Huang & Taylor, Stephen J., 2001. "Forecasting S&P 100 volatility: the incremental information content of implied volatilities and high-frequency index returns," Journal of Econometrics, Elsevier, vol. 105(1), pages 5-26, November.
    43. Pérez-Rodríguez, Jorge V. & Ledesma-Rodríguez, Francisco & Santana-Gallego, María, 2015. "Testing dependence between GDP and tourism's growth rates," Tourism Management, Elsevier, vol. 48(C), pages 268-282.
    44. Chih‐Chiang Hsu & Chih‐Ping Tseng & Yaw‐Huei Wang, 2008. "Dynamic hedging with futures: A copula‐based GARCH model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(11), pages 1095-1116, November.
    45. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    46. Mendes, Beatriz Vaz de Melo & Accioly, Victor Bello, 2012. "On the dependence structure of realized volatilities," International Review of Financial Analysis, Elsevier, vol. 22(C), pages 1-9.
    47. Dutta, Anupam, 2018. "A note on the implied volatility spillovers between gold and silver markets," Resources Policy, Elsevier, vol. 55(C), pages 192-195.
    48. Christensen, B. J. & Prabhala, N. R., 1998. "The relation between implied and realized volatility," Journal of Financial Economics, Elsevier, vol. 50(2), pages 125-150, November.
    49. Vicentiu Covrig & Buen Sin Low, 2003. "The quality of volatility traded on the over‐the‐counter currency market: A multiple horizons study," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 23(3), pages 261-285, March.
    50. Christensen, Bent Jesper & Nielsen, Morten Orregaard, 2006. "Asymptotic normality of narrow-band least squares in the stationary fractional cointegration model and volatility forecasting," Journal of Econometrics, Elsevier, vol. 133(1), pages 343-371, July.
    51. Low, Rand Kwong Yew & Alcock, Jamie & Faff, Robert & Brailsford, Timothy, 2013. "Canonical vine copulas in the context of modern portfolio management: Are they worth it?," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3085-3099.
    52. He, Kaijian & Liu, Youjin & Yu, Lean & Lai, Kin Keung, 2016. "Multiscale dependence analysis and portfolio risk modeling for precious metal markets," Resources Policy, Elsevier, vol. 50(C), pages 224-233.
    53. Ning, Cathy & Xu, Dinghai & Wirjanto, Tony S., 2008. "Modeling the leverage effect with copulas and realized volatility," Finance Research Letters, Elsevier, vol. 5(4), pages 221-227, December.
    54. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    55. James Chong, 2004. "Value at risk from econometric models and implied from currency options," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(8), pages 603-620.
    56. Oleg Sokolinskiy & Dick van Dijk, 2011. "Forecasting Volatility with Copula-Based Time Series Models," Tinbergen Institute Discussion Papers 11-125/4, Tinbergen Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pérez-Rodríguez, Jorge V. & Andrada-Félix, Julián & Rachinger, Heiko, 2021. "Testing the forward volatility unbiasedness hypothesis in exchange rates under long-range dependence," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pérez-Rodríguez, Jorge V. & Andrada-Félix, Julián & Rachinger, Heiko, 2021. "Testing the forward volatility unbiasedness hypothesis in exchange rates under long-range dependence," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    2. Zhou, Xinmiao & Qian, Huanhuan & Pérez-Rodríguez, Jorge. V. & González López-Valcárcel, Beatriz, 2020. "Risk dependence and cointegration between pharmaceutical stock markets: The case of China and the USA," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    3. Pérez-Rodríguez, Jorge V. & Ledesma-Rodríguez, Francisco & Santana-Gallego, María, 2015. "Testing dependence between GDP and tourism's growth rates," Tourism Management, Elsevier, vol. 48(C), pages 268-282.
    4. Bams, Dennis & Blanchard, Gildas & Lehnert, Thorsten, 2017. "Volatility measures and Value-at-Risk," International Journal of Forecasting, Elsevier, vol. 33(4), pages 848-863.
    5. Fantazzini, Dean & Shangina, Tamara, 2019. "The importance of being informed: forecasting market risk measures for the Russian RTS index future using online data and implied volatility over two decades," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 55, pages 5-31.
    6. Slim, Skander & Dahmene, Meriam & Boughrara, Adel, 2020. "How informative are variance risk premium and implied volatility for Value-at-Risk prediction? International evidence," The Quarterly Review of Economics and Finance, Elsevier, vol. 76(C), pages 22-37.
    7. Barunik, Jozef & Barunikova, Michaela, 2015. "Revisiting the long memory dynamics of implied-realized volatility relation: A new evidence from wavelet band spectrum regression," FinMaP-Working Papers 43, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    8. Plíhal, Tomáš & Lyócsa, Štefan, 2021. "Modeling realized volatility of the EUR/USD exchange rate: Does implied volatility really matter?," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 811-829.
    9. Baruník, Jozef & Hlínková, Michaela, 2016. "Revisiting the long memory dynamics of the implied–realized volatility relationship: New evidence from the wavelet regression," Economic Modelling, Elsevier, vol. 54(C), pages 503-514.
    10. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    11. Dicle, Mehmet F. & Levendis, John, 2020. "Historic risk and implied volatility," Global Finance Journal, Elsevier, vol. 45(C).
    12. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    13. Busch, Thomas & Christensen, Bent Jesper & Nielsen, Morten Ørregaard, 2011. "The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets," Journal of Econometrics, Elsevier, vol. 160(1), pages 48-57, January.
    14. Smith, Michael Stanley, 2023. "Implicit Copulas: An Overview," Econometrics and Statistics, Elsevier, vol. 28(C), pages 81-104.
    15. Michael Stanley Smith, 2021. "Implicit Copulas: An Overview," Papers 2109.04718, arXiv.org.
    16. Kim, Jun Sik & Ryu, Doojin, 2015. "Are the KOSPI 200 implied volatilities useful in value-at-risk models?," Emerging Markets Review, Elsevier, vol. 22(C), pages 43-64.
    17. Ewa Ratuszny, 2015. "Risk Modeling of Commodities using CAViaR Models, the Encompassing Method and the Combined Forecasts," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 15, pages 129-156.
    18. Neely, Christopher J., 2009. "Forecasting foreign exchange volatility: Why is implied volatility biased and inefficient? And does it matter?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(1), pages 188-205, February.
    19. Becker, Ralf & Clements, Adam E. & White, Scott I., 2006. "On the informational efficiency of S&P500 implied volatility," The North American Journal of Economics and Finance, Elsevier, vol. 17(2), pages 139-153, August.
    20. Peter Christoffersen & Kris Jacobs & Gregory Vainberg, 2007. "Forward-Looking Betas," CREATES Research Papers 2007-39, Department of Economics and Business Economics, Aarhus University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:risman:v:22:y:2020:i:1:d:10.1057_s41283-019-00054-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.