IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v24y2021i1d10.1007_s11203-020-09227-z.html
   My bibliography  Save this article

Joint estimation for volatility and drift parameters of ergodic jump diffusion processes via contrast function

Author

Listed:
  • Chiara Amorino

    (Université Paris-Saclay)

  • Arnaud Gloter

    (Université Paris-Saclay)

Abstract

In this paper we consider an ergodic diffusion process with jumps whose drift coefficient depends on $$\mu $$ μ and volatility coefficient depends on $$\sigma $$ σ , two unknown parameters. We suppose that the process is discretely observed at the instants $$(t^n_i)_{i=0,\ldots ,n}$$ ( t i n ) i = 0 , … , n with $$\Delta _n=\sup _{i=0,\ldots ,n-1} (t^n_{i+1}-t^n_i) \rightarrow 0$$ Δ n = sup i = 0 , … , n - 1 ( t i + 1 n - t i n ) → 0 . We introduce an estimator of $$\theta :=(\mu , \sigma )$$ θ : = ( μ , σ ) , based on a contrast function, which is asymptotically gaussian without requiring any conditions on the rate at which $$\Delta _n \rightarrow 0$$ Δ n → 0 , assuming a finite jump activity. This extends earlier results where a condition on the step discretization was needed (see Gloter et al. in Ann Stat 46(4):1445–1480, 2018; Shimizu and Yoshida in Stat Inference Stoch Process 9(3):227–277, 2006) or where only the estimation of the drift parameter was considered (see Amorino and Gloter in Scand J Stat 47:279–346, 2019. https://doi.org/10.1111/sjos.12406 ). In general situations, our contrast function is not explicit and in practise one has to resort to some approximation. We propose explicit approximations of the contrast function, such that the estimation of $$\theta $$ θ is feasible under the condition that $$n\Delta _n^k \rightarrow 0$$ n Δ n k → 0 where $$k>0$$ k > 0 can be arbitrarily large. This extends the results obtained by Kessler (Scand J Stat 24(2):211–229, 1997) in the case of continuous processes.

Suggested Citation

  • Chiara Amorino & Arnaud Gloter, 2021. "Joint estimation for volatility and drift parameters of ergodic jump diffusion processes via contrast function," Statistical Inference for Stochastic Processes, Springer, vol. 24(1), pages 61-148, April.
  • Handle: RePEc:spr:sistpr:v:24:y:2021:i:1:d:10.1007_s11203-020-09227-z
    DOI: 10.1007/s11203-020-09227-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11203-020-09227-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11203-020-09227-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yasutaka Shimizu, 2006. "M-Estimation for Discretely Observed Ergodic Diffusion Processes with Infinitely Many Jumps," Statistical Inference for Stochastic Processes, Springer, vol. 9(2), pages 179-225, July.
    2. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    3. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    4. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    5. Ai[dieresis]t-Sahalia, Yacine & Yu, Jialin, 2006. "Saddlepoint approximations for continuous-time Markov processes," Journal of Econometrics, Elsevier, vol. 134(2), pages 507-551, October.
    6. Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, June.
    7. Yasutaka Shimizu & Nakahiro Yoshida, 2006. "Estimation of Parameters for Diffusion Processes with Jumps from Discrete Observations," Statistical Inference for Stochastic Processes, Springer, vol. 9(3), pages 227-277, October.
    8. Masuda, Hiroki, 2007. "Ergodicity and exponential [beta]-mixing bounds for multidimensional diffusions with jumps," Stochastic Processes and their Applications, Elsevier, vol. 117(1), pages 35-56, January.
    9. Amorino, Chiara & Gloter, Arnaud, 2020. "Unbiased truncated quadratic variation for volatility estimation in jump diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 5888-5939.
    10. Li, Chenxu & Chen, Dachuan, 2016. "Estimating jump–diffusions using closed-form likelihood expansions," Journal of Econometrics, Elsevier, vol. 195(1), pages 51-70.
    11. Yoshida, Nakahiro, 1992. "Estimation for diffusion processes from discrete observation," Journal of Multivariate Analysis, Elsevier, vol. 41(2), pages 220-242, May.
    12. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amorino, Chiara & Heidari, Akram & Pilipauskaitė, Vytautė & Podolskij, Mark, 2023. "Parameter estimation of discretely observed interacting particle systems," Stochastic Processes and their Applications, Elsevier, vol. 163(C), pages 350-386.
    2. Mitsuki Kobayashi & Yasutaka Shimizu, 2023. "Threshold estimation for jump-diffusions under small noise asymptotics," Statistical Inference for Stochastic Processes, Springer, vol. 26(2), pages 361-411, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiara Amorino & Arnaud Gloter, 2020. "Contrast function estimation for the drift parameter of ergodic jump diffusion process," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(2), pages 279-346, June.
    2. Jakobsen, Nina Munkholt & Sørensen, Michael, 2019. "Estimating functions for jump–diffusions," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3282-3318.
    3. Li, Chenxu & Chen, Dachuan, 2016. "Estimating jump–diffusions using closed-form likelihood expansions," Journal of Econometrics, Elsevier, vol. 195(1), pages 51-70.
    4. Michael C. Fu & Bingqing Li & Rongwen Wu & Tianqi Zhang, 2020. "Option Pricing Under a Discrete-Time Markov Switching Stochastic Volatility with Co-Jump Model," Papers 2006.15054, arXiv.org.
    5. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    6. Dario Alitab & Giacomo Bormetti & Fulvio Corsi & Adam A. Majewski, 2019. "A realized volatility approach to option pricing with continuous and jump variance components," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 639-664, December.
    7. Christoffersen, Peter & Heston, Steve & Jacobs, Kris, 2006. "Option valuation with conditional skewness," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 253-284.
    8. Adam Aleksander Majewski & Giacomo Bormetti & Fulvio Corsi, 2014. "Smile from the Past: A general option pricing framework with multiple volatility and leverage components," Papers 1404.3555, arXiv.org.
    9. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    10. R. Merino & J. Pospíšil & T. Sobotka & J. Vives, 2018. "Decomposition Formula For Jump Diffusion Models," Journal of Enterprising Culture (JEC), World Scientific Publishing Co. Pte. Ltd., vol. 21(08), pages 1-36, December.
    11. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Josep Vives, 2019. "Decomposition formula for jump diffusion models," Papers 1906.06930, arXiv.org.
    12. Ascione, Giacomo & Mehrdoust, Farshid & Orlando, Giuseppe & Samimi, Oldouz, 2023. "Foreign Exchange Options on Heston-CIR Model Under Lévy Process Framework," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    13. Gonçalo Faria & João Correia-da-Silva, 2014. "A closed-form solution for options with ambiguity about stochastic volatility," Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
    14. Wan, Xiangwei & Yang, Nian, 2021. "Hermite expansion of transition densities and European option prices for multivariate diffusions with jumps," Journal of Economic Dynamics and Control, Elsevier, vol. 125(C).
    15. Jingzhi Huang & Liuren Wu, 2004. "Specification Analysis of Option Pricing Models Based on Time- Changed Levy Processes," Finance 0401002, University Library of Munich, Germany.
    16. Carr, Peter & Wu, Liuren, 2007. "Stochastic skew in currency options," Journal of Financial Economics, Elsevier, vol. 86(1), pages 213-247, October.
    17. Liming Feng & Vadim Linetsky, 2008. "Pricing Options in Jump-Diffusion Models: An Extrapolation Approach," Operations Research, INFORMS, vol. 56(2), pages 304-325, April.
    18. Lian, Yu-Min & Chen, Jun-Home & Liao, Szu-Lang, 2021. "Cojump risks and their impacts on option pricing," The Quarterly Review of Economics and Finance, Elsevier, vol. 79(C), pages 399-410.
    19. Xu, Weidong & Wu, Chongfeng & Li, Hongyi, 2011. "Foreign equity option pricing under stochastic volatility model with double jumps," Economic Modelling, Elsevier, vol. 28(4), pages 1857-1863, July.
    20. Yan Qu & Angelos Dassios & Hongbiao Zhao, 2023. "Shot-noise cojumps: Exact simulation and option pricing," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 74(3), pages 647-665, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:24:y:2021:i:1:d:10.1007_s11203-020-09227-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.