IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2108.02151.html
   My bibliography  Save this paper

Semiparametric Functional Factor Models with Bayesian Rank Selection

Author

Listed:
  • Daniel R. Kowal
  • Antonio Canale

Abstract

Functional data are frequently accompanied by a parametric template that describes the typical shapes of the functions. However, these parametric templates can incur significant bias, which undermines both utility and interpretability. To correct for model misspecification, we augment the parametric template with an infinite-dimensional nonparametric functional basis. The nonparametric basis functions are learned from the data and constrained to be orthogonal to the parametric template, which preserves distinctness between the parametric and nonparametric terms. This distinctness is essential to prevent functional confounding, which otherwise induces severe bias for the parametric terms. The nonparametric factors are regularized with an ordered spike-and-slab prior that provides consistent rank selection and satisfies several appealing theoretical properties. The versatility of the proposed approach is illustrated through applications to synthetic data, human motor control data, and dynamic yield curve data. Relative to parametric and semiparametric alternatives, the proposed semiparametric functional factor model eliminates bias, reduces excessive posterior and predictive uncertainty, and provides reliable inference on the effective number of nonparametric terms--all with minimal additional computational costs.

Suggested Citation

  • Daniel R. Kowal & Antonio Canale, 2021. "Semiparametric Functional Factor Models with Bayesian Rank Selection," Papers 2108.02151, arXiv.org, revised May 2022.
  • Handle: RePEc:arx:papers:2108.02151
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2108.02151
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    2. Cruz-Marcelo, Alejandro & Ensor, Katherine B. & Rosner, Gary L., 2011. "Estimating the Term Structure With a Semiparametric Bayesian Hierarchical Model: An Application to Corporate Bonds," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 387-395.
    3. Sue J. Welham & Brian R. Cullis & Michael G. Kenward & Robin Thompson, 2006. "The Analysis of Longitudinal Data Using Mixed Model L-Splines," Biometrics, The International Biometric Society, vol. 62(2), pages 392-401, June.
    4. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    5. Laurini, Márcio Poletti & Hotta, Luiz Koodi, 2010. "Bayesian extensions to Diebold-Li term structure model," International Review of Financial Analysis, Elsevier, vol. 19(5), pages 342-350, December.
    6. Bruno Scarpa & David B. Dunson, 2009. "Bayesian Hierarchical Functional Data Analysis Via Contaminated Informative Priors," Biometrics, The International Biometric Society, vol. 65(3), pages 772-780, September.
    7. Dick Dijk & Siem Jan Koopman & Michel Wel & Jonathan H. Wright, 2014. "Forecasting interest rates with shifting endpoints," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 693-712, August.
    8. Durante, Daniele, 2017. "A note on the multiplicative gamma process," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 198-204.
    9. Sirio Legramanti & Daniele Durante & David B Dunson, 2020. "Bayesian cumulative shrinkage for infinite factorizations," Biometrika, Biometrika Trust, vol. 107(3), pages 745-752.
    10. Jeff Goldsmith & Tomoko Kitago, 2016. "Assessing systematic effects of stroke on motor control by using hierarchical function-on-scalar regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(2), pages 215-236, February.
    11. Daniel R. Kowal & David S. Matteson & David Ruppert, 2017. "A Bayesian Multivariate Functional Dynamic Linear Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 733-744, April.
    12. Ishwaran H. & James L. F, 2001. "Gibbs Sampling Methods for Stick Breaking Priors," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 161-173, March.
    13. Jeff Goldsmith & Vadim Zipunnikov & Jennifer Schrack, 2015. "Generalized multilevel function-on-scalar regression and principal component analysis," Biometrics, The International Biometric Society, vol. 71(2), pages 344-353, June.
    14. Peijun Sang & Liangliang Wang & Jiguo Cao, 2017. "Parametric functional principal component analysis," Biometrics, The International Biometric Society, vol. 73(3), pages 802-810, September.
    15. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    16. A. Bhattacharya & D. B. Dunson, 2011. "Sparse Bayesian infinite factor models," Biometrika, Biometrika Trust, vol. 98(2), pages 291-306.
    17. Silvia Montagna & Surya T. Tokdar & Brian Neelon & David B. Dunson, 2012. "Bayesian Latent Factor Regression for Functional and Longitudinal Data," Biometrics, The International Biometric Society, vol. 68(4), pages 1064-1073, December.
    18. Fama, Eugene F & Bliss, Robert R, 1987. "The Information in Long-Maturity Forward Rates," American Economic Review, American Economic Association, vol. 77(4), pages 680-692, September.
    19. Daniel R. Kowal, 2019. "Integer‐valued functional data analysis for measles forecasting," Biometrics, The International Biometric Society, vol. 75(4), pages 1321-1333, December.
    20. Bruno Scarpa & David B. Dunson, 2014. "Enriched Stick-Breaking Processes for Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 647-660, June.
    21. J. O. Ramsay & X. Wang & R. Flanagan, 1995. "A Functional Data Analysis of the Pinch Force of Human Fingers," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 44(1), pages 17-30, March.
    22. Bianchi, Francesco & Mumtaz, Haroon & Surico, Paolo, 2009. "The great moderation of the term structure of UK interest rates," Journal of Monetary Economics, Elsevier, vol. 56(6), pages 856-871, September.
    23. A. Canale & A. Lijoi & B. Nipoti & I. Prünster, 2017. "On the Pitman–Yor process with spike and slab base measure," Biometrika, Biometrika Trust, vol. 104(3), pages 681-697.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sylvia Fruhwirth-Schnatter, 2023. "Generalized Cumulative Shrinkage Process Priors with Applications to Sparse Bayesian Factor Analysis," Papers 2303.00473, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shin, Minchul & Zhong, Molin, 2017. "Does realized volatility help bond yield density prediction?," International Journal of Forecasting, Elsevier, vol. 33(2), pages 373-389.
    2. Daewon Yang & Taeryon Choi & Eric Lavigne & Yeonseung Chung, 2022. "Non‐parametric Bayesian covariate‐dependent multivariate functional clustering: An application to time‐series data for multiple air pollutants," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1521-1542, November.
    3. Matsumura, Marco & Moreira, Ajax & Vicente, José, 2011. "Forecasting the yield curve with linear factor models," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 237-243.
    4. Hautsch, Nikolaus & Yang, Fuyu, 2012. "Bayesian inference in a Stochastic Volatility Nelson–Siegel model," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3774-3792.
    5. P. Byrne, Joseph & Cao, Shuo & Korobilis, Dimitris, 2015. "Term Structure Dynamics, Macro-Finance Factors and Model Uncertainty," SIRE Discussion Papers 2015-71, Scottish Institute for Research in Economics (SIRE).
    6. Caldeira, João F. & Laurini, Márcio P. & Portugal, Marcelo S., 2010. "Bayesian Inference Applied to Dynamic Nelson-Siegel Model with Stochastic Volatility," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 30(1), October.
    7. Levant, Jared & Ma, Jun, 2017. "A dynamic Nelson-Siegel yield curve model with Markov switching," Economic Modelling, Elsevier, vol. 67(C), pages 73-87.
    8. Paccagnini, Alessia, 2016. "The macroeconomic determinants of the US term structure during the Great Moderation," Economic Modelling, Elsevier, vol. 52(PA), pages 216-225.
    9. M�rcio Poletti Laurini, 2014. "Dynamic functional data analysis with non-parametric state space models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(1), pages 142-163, January.
    10. Gaus, Eric & Sinha, Arunima, 2018. "What does the yield curve imply about investor expectations?," Journal of Macroeconomics, Elsevier, vol. 57(C), pages 248-265.
    11. Vadim Kaushanskiy & Victor Lapshin, 2016. "A nonparametric method for term structure fitting with automatic smoothing," Applied Economics, Taylor & Francis Journals, vol. 48(58), pages 5654-5666, December.
    12. Badics, Milan Csaba & Huszar, Zsuzsa R. & Kotro, Balazs B., 2023. "The impact of crisis periods and monetary decisions of the Fed and the ECB on the sovereign yield curve network," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    13. P. Byrne, Joseph & Cao, Shuo & Korobilis, Dimitris, 2015. "Term Structure Dynamics, Macro-Finance Factors and Model Uncertainty," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-71, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    14. Byrne, Joseph P. & Cao, Shuo & Korobilis, Dimitris, 2017. "Forecasting the term structure of government bond yields in unstable environments," Journal of Empirical Finance, Elsevier, vol. 44(C), pages 209-225.
    15. Eric Hillebrand & Huiyu Huang & Tae-Hwy Lee & Canlin Li, 2018. "Using the Entire Yield Curve in Forecasting Output and Inflation," Econometrics, MDPI, vol. 6(3), pages 1-27, August.
    16. Evangelos Salachas & Georgios P. Kouretas & Nikiforos T. Laopodis, 2024. "The term structure of interest rates and economic activity: Evidence from the COVID‐19 pandemic," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 1018-1041, July.
    17. Bowsher, Clive G. & Meeks, Roland, 2008. "The Dynamics of Economic Functions: Modeling and Forecasting the Yield Curve," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1419-1437.
    18. Sylvia Fruhwirth-Schnatter, 2023. "Generalized Cumulative Shrinkage Process Priors with Applications to Sparse Bayesian Factor Analysis," Papers 2303.00473, arXiv.org.
    19. Dick Dijk & Siem Jan Koopman & Michel Wel & Jonathan H. Wright, 2014. "Forecasting interest rates with shifting endpoints," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 693-712, August.
    20. Gary S. Anderson & Alena Audzeyeva, 2019. "A Coherent Framework for Predicting Emerging Market Credit Spreads with Support Vector Regression," Finance and Economics Discussion Series 2019-074, Board of Governors of the Federal Reserve System (U.S.).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2108.02151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.