IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v23y2010i4d10.1007_s10959-009-0240-8.html
   My bibliography  Save this article

Local Subexponentiality and Self-decomposability

Author

Listed:
  • Toshiro Watanabe

    (The University of Aizu)

  • Kouji Yamamuro

    (Gifu University)

Abstract

The class of exponential tilts of convolution equivalent distributions is determined. As a corollary, the local subexponentiality of one-sided infinitely divisible distributions is characterized. It is applied to the subexponentiality of the densities of a self-decomposable distribution and its Lévy measure. Bondesson’s conjecture on the density of the Lévy measure of a lognormal distribution is solved as an example. Results of Denisov et al. on the distributions of random sums are extended to the two-sided case. Finally, the local subexponentiality of the distribution of the supremum of a random walk is characterized.

Suggested Citation

  • Toshiro Watanabe & Kouji Yamamuro, 2010. "Local Subexponentiality and Self-decomposability," Journal of Theoretical Probability, Springer, vol. 23(4), pages 1039-1067, December.
  • Handle: RePEc:spr:jotpro:v:23:y:2010:i:4:d:10.1007_s10959-009-0240-8
    DOI: 10.1007/s10959-009-0240-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-009-0240-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-009-0240-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Korshunov, D., 1997. "On distribution tail of the maximum of a random walk," Stochastic Processes and their Applications, Elsevier, vol. 72(1), pages 97-103, December.
    2. Lennart Bondesson, 2002. "On the Lévy Measure of the Lognormal and the LogCauchy Distributions," Methodology and Computing in Applied Probability, Springer, vol. 4(3), pages 243-256, September.
    3. Søren Asmussen & Serguei Foss & Dmitry Korshunov, 2003. "Asymptotics for Sums of Random Variables with Local Subexponential Behaviour," Journal of Theoretical Probability, Springer, vol. 16(2), pages 489-518, April.
    4. Ole E. Barndorff‐Nielsen & Neil Shephard, 2003. "Integrated OU Processes and Non‐Gaussian OU‐based Stochastic Volatility Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(2), pages 277-295, June.
    5. Asmussen, Søren & Kalashnikov, Vladimir & Konstantinides, Dimitrios & Klüppelberg, Claudia & Tsitsiashvili, Gurami, 2002. "A local limit theorem for random walk maxima with heavy tails," Statistics & Probability Letters, Elsevier, vol. 56(4), pages 399-404, February.
    6. Embrechts, Paul & Goldie, Charles M., 1982. "On convolution tails," Stochastic Processes and their Applications, Elsevier, vol. 13(3), pages 263-278, September.
    7. Embrechts, P. & Veraverbeke, N., 1982. "Estimates for the probability of ruin with special emphasis on the possibility of large claims," Insurance: Mathematics and Economics, Elsevier, vol. 1(1), pages 55-72, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Toshiro Watanabe, 2022. "Second-Order Behaviour for Self-Decomposable Distributions with Two-Sided Regularly Varying Densities," Journal of Theoretical Probability, Springer, vol. 35(2), pages 1343-1366, June.
    2. Toshiro Watanabe & Kouji Yamamuro, 2017. "Two Non-closure Properties on the Class of Subexponential Densities," Journal of Theoretical Probability, Springer, vol. 30(3), pages 1059-1075, September.
    3. Toshiro Watanabe, 2022. "Embrechts–Goldie’s Problem on the Class of Lattice Convolution Equivalent Distributions," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2622-2642, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Søren Asmussen & Serguei Foss & Dmitry Korshunov, 2003. "Asymptotics for Sums of Random Variables with Local Subexponential Behaviour," Journal of Theoretical Probability, Springer, vol. 16(2), pages 489-518, April.
    2. Wang, Yuebao & Yang, Yang & Wang, Kaiyong & Cheng, Dongya, 2007. "Some new equivalent conditions on asymptotics and local asymptotics for random sums and their applications," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 256-266, March.
    3. Zhaolei Cui & Yuebao Wang & Hui Xu, 2022. "Local Closure under Infinitely Divisible Distribution Roots and Esscher Transform," Mathematics, MDPI, vol. 10(21), pages 1-24, November.
    4. Gao, Qingwu & Wang, Yuebao, 2009. "Ruin probability and local ruin probability in the random multi-delayed renewal risk model," Statistics & Probability Letters, Elsevier, vol. 79(5), pages 588-596, March.
    5. Toshiro Watanabe & Kouji Yamamuro, 2017. "Two Non-closure Properties on the Class of Subexponential Densities," Journal of Theoretical Probability, Springer, vol. 30(3), pages 1059-1075, September.
    6. Schlegel, Sabine, 1998. "Ruin probabilities in perturbed risk models," Insurance: Mathematics and Economics, Elsevier, vol. 22(1), pages 93-104, May.
    7. Willmot, Gordon E., 1997. "On the relationship between bounds on the tails of compound distributions," Insurance: Mathematics and Economics, Elsevier, vol. 19(2), pages 95-103, April.
    8. Vaios Dermitzakis & Susan M. Pitts & Konstadinos Politis, 2010. "Lundberg-type Bounds and Asymptotics for the Moments of the Time to Ruin," Methodology and Computing in Applied Probability, Springer, vol. 12(1), pages 155-175, March.
    9. Toshiro Watanabe, 2022. "Embrechts–Goldie’s Problem on the Class of Lattice Convolution Equivalent Distributions," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2622-2642, December.
    10. Konstantinides, Dimitrios & Tang, Qihe & Tsitsiashvili, Gurami, 2002. "Estimates for the ruin probability in the classical risk model with constant interest force in the presence of heavy tails," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 447-460, December.
    11. M. S. Sgibnev, 1998. "On the Asymptotic Behavior of the Harmonic Renewal Measure," Journal of Theoretical Probability, Springer, vol. 11(2), pages 371-382, April.
    12. Griffin, Philip S. & Maller, Ross A. & Schaik, Kees van, 2012. "Asymptotic distributions of the overshoot and undershoots for the Lévy insurance risk process in the Cramér and convolution equivalent cases," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 382-392.
    13. Yang Yang & Xinzhi Wang & Shaoying Chen, 2022. "Second Order Asymptotics for Infinite-Time Ruin Probability in a Compound Renewal Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 1221-1236, June.
    14. Toshiro Watanabe, 2022. "Second-Order Behaviour for Self-Decomposable Distributions with Two-Sided Regularly Varying Densities," Journal of Theoretical Probability, Springer, vol. 35(2), pages 1343-1366, June.
    15. Yuebao Wang & Hui Xu & Dongya Cheng & Changjun Yu, 2018. "The local asymptotic estimation for the supremum of a random walk with generalized strong subexponential summands," Statistical Papers, Springer, vol. 59(1), pages 99-126, March.
    16. Lin, Jianxi, 2012. "Second order asymptotics for ruin probabilities in a renewal risk model with heavy-tailed claims," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 422-429.
    17. Yuebao Wang & Kaiyong Wang, 2009. "Equivalent Conditions of Asymptotics for the Density of the Supremum of a Random Walk in the Intermediate Case," Journal of Theoretical Probability, Springer, vol. 22(2), pages 281-293, June.
    18. Korshunov, D., 1997. "On distribution tail of the maximum of a random walk," Stochastic Processes and their Applications, Elsevier, vol. 72(1), pages 97-103, December.
    19. Geluk, J.L. & De Vries, C.G., 2006. "Weighted sums of subexponential random variables and asymptotic dependence between returns on reinsurance equities," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 39-56, February.
    20. Taufer, Emanuele & Leonenko, Nikolai, 2009. "Simulation of Lvy-driven Ornstein-Uhlenbeck processes with given marginal distribution," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2427-2437, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:23:y:2010:i:4:d:10.1007_s10959-009-0240-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.