IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/50043.html
   My bibliography  Save this paper

Estimation in the presence of many nuisance parameters: composite likelihood and plug-in likelihood

Author

Listed:
  • Wu, Billy
  • Yao, Qiwei
  • Zhu, Shiwu

Abstract

We consider the incidental parameters problem in this paper, i.e. the estimation for a small number of parameters of interest in the presence of a large number of nuisance parameters. By assuming that the observations are taken from a multiple strictly stationary process, the two estimation methods, namely the maximum composite quasi-likelihood estimation (MCQLE) and the maximum plug-in quasi-likelihood estimation (MPQLE) are considered. For the MCQLE, we profile out nuisance parameters based on lower-dimensional marginal likelihoods, while the MPQLE is based on some initial estimators for nuisance parameters. The asymptotic normality for both the MCQLE and the MPQLE is established under the assumption that the number of nuisance parameters and the number of observations go to infinity together, and both the estimators for the parameters of interest enjoy the standard root-nn convergence rate. Simulation with a spatial–temporal model illustrates the finite sample properties of the two estimation methods.

Suggested Citation

  • Wu, Billy & Yao, Qiwei & Zhu, Shiwu, 2013. "Estimation in the presence of many nuisance parameters: composite likelihood and plug-in likelihood," LSE Research Online Documents on Economics 50043, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:50043
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/50043/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tao, Minjing & Wang, Yazhen & Yao, Qiwei & Zou, Jian, 2011. "Large Volatility Matrix Inference via Combining Low-Frequency and High-Frequency Approaches," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1025-1040.
    2. Kuk, Anthony Y. C. & Nott, David J., 2000. "A pairwise likelihood approach to analyzing correlated binary data," Statistics & Probability Letters, Elsevier, vol. 47(4), pages 329-335, May.
    3. Cavit Pakel & Neil Shephard & Kevin Sheppard & Robert F. Engle, 2021. "Fitting Vast Dimensional Time-Varying Covariance Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 652-668, July.
    4. Tao, Minjing & Wang, Yahzen & Yao, Qiwei & Zou, Jian, 2011. "Large volatility matrix inference via combining low-frequency and high-frequency approaches," LSE Research Online Documents on Economics 39321, London School of Economics and Political Science, LSE Library.
    5. D. R. Cox, 2004. "A note on pseudolikelihood constructed from marginal densities," Biometrika, Biometrika Trust, vol. 91(3), pages 729-737, September.
    6. Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Billy & Yao, Qiwei & Zhu, Shiwu, 2013. "Estimation in the presence of many nuisance parameters: Composite likelihood and plug-in likelihood," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2877-2898.
    2. Asai Manabu & So Mike K.P., 2015. "Long Memory and Asymmetry for Matrix-Exponential Dynamic Correlation Processes," Journal of Time Series Econometrics, De Gruyter, vol. 7(1), pages 69-94, January.
    3. Manabu Asai & Rangan Gupta & Michael McAleer, 2019. "The Impact of Jumps and Leverage in Forecasting the Co-Volatility of Oil and Gold Futures," Energies, MDPI, vol. 12(17), pages 1-17, September.
    4. Asai, Manabu & McAleer, Michael, 2015. "Forecasting co-volatilities via factor models with asymmetry and long memory in realized covariance," Journal of Econometrics, Elsevier, vol. 189(2), pages 251-262.
    5. M.-L. Feddag, 2016. "Pairwise likelihood estimation for the normal ogive model with binary data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(2), pages 223-237, April.
    6. Jian, Zhihong & Deng, Pingjun & Zhu, Zhican, 2018. "High-dimensional covariance forecasting based on principal component analysis of high-frequency data," Economic Modelling, Elsevier, vol. 75(C), pages 422-431.
    7. Anatolyev, Stanislav & Khabibullin, Renat & Prokhorov, Artem, 2014. "An algorithm for constructing high dimensional distributions from distributions of lower dimension," Economics Letters, Elsevier, vol. 123(3), pages 257-261.
    8. Xinyu Song, 2019. "Large Volatility Matrix Prediction with High-Frequency Data," Papers 1907.01196, arXiv.org, revised Sep 2019.
    9. Cai, T. Tony & Hu, Jianchang & Li, Yingying & Zheng, Xinghua, 2020. "High-dimensional minimum variance portfolio estimation based on high-frequency data," Journal of Econometrics, Elsevier, vol. 214(2), pages 482-494.
    10. Jan Patrick Hartkopf, 2023. "Composite forecasting of vast-dimensional realized covariance matrices using factor state-space models," Empirical Economics, Springer, vol. 64(1), pages 393-436, January.
    11. Kim, Donggyu & Wang, Yazhen & Zou, Jian, 2016. "Asymptotic theory for large volatility matrix estimation based on high-frequency financial data," Stochastic Processes and their Applications, Elsevier, vol. 126(11), pages 3527-3577.
    12. Philip L. H. Yu & W. K. Li & F. C. Ng, 2017. "The Generalized Conditional Autoregressive Wishart Model for Multivariate Realized Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 513-527, October.
    13. Dohyun Chun & Donggyu Kim, 2022. "State Heterogeneity Analysis of Financial Volatility using high‐frequency Financial Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 105-124, January.
    14. Kim, Donggyu & Song, Xinyu & Wang, Yazhen, 2022. "Unified discrete-time factor stochastic volatility and continuous-time Itô models for combining inference based on low-frequency and high-frequency," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    15. Gianluca Cubadda & Alain Hecq, 2022. "Dimension Reduction for High‐Dimensional Vector Autoregressive Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(5), pages 1123-1152, October.
    16. Joe, Harry & Lee, Youngjo, 2009. "On weighting of bivariate margins in pairwise likelihood," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 670-685, April.
    17. Xin Jin & John M. Maheu & Qiao Yang, 2019. "Bayesian parametric and semiparametric factor models for large realized covariance matrices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(5), pages 641-660, August.
    18. Varin, Cristiano & Host, Gudmund & Skare, Oivind, 2005. "Pairwise likelihood inference in spatial generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1173-1191, June.
    19. Bhat, Chandra R., 2011. "The maximum approximate composite marginal likelihood (MACML) estimation of multinomial probit-based unordered response choice models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 923-939, August.
    20. Chun, Dohyun & Cho, Hoon & Ryu, Doojin, 2023. "Discovering the drivers of stock market volatility in a data-rich world," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 82(C).

    More about this item

    Keywords

    composite likelihood; incidental parameters problem; nuisance parameterlem; panel data; profile likelihood; quasi-likelihood; root-nn convergence;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:50043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.