IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v119y2009i6p2004-2027.html
   My bibliography  Save this article

Asymptotic analysis of hedging errors in models with jumps

Author

Listed:
  • Tankov, Peter
  • Voltchkova, Ekaterina

Abstract

Most authors who studied the problem of option hedging in incomplete markets, and, in particular, in models with jumps, focused on finding the strategies that minimize the residual hedging error. However, the resulting strategies are usually unrealistic because they require a continuously rebalanced portfolio, which is impossible to achieve in practice due to transaction costs. In reality, the portfolios are rebalanced discretely, which leads to a 'hedging error of the second type', due to the difference between the optimal portfolio and its discretely rebalanced version. In this paper, we analyze this second hedging error and establish a limit theorem for the renormalized error, when the discretization step tends to zero, in the framework of general Itô processes with jumps. The results are applied to the problem of hedging an option with a discontinuous pay-off in a jump-diffusion model.

Suggested Citation

  • Tankov, Peter & Voltchkova, Ekaterina, 2009. "Asymptotic analysis of hedging errors in models with jumps," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 2004-2027, June.
  • Handle: RePEc:eee:spapps:v:119:y:2009:i:6:p:2004-2027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(08)00155-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Friedrich Hubalek & Jan Kallsen & Leszek Krawczyk, 2006. "Variance-optimal hedging for processes with stationary independent increments," Papers math/0607112, arXiv.org.
    2. Geiss, Christel & Geiss, Stefan, 2006. "On an approximation problem for stochastic integrals where random time nets do not help," Stochastic Processes and their Applications, Elsevier, vol. 116(3), pages 407-422, March.
    3. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    4. Dimitris Bertsimas & Leonid Kogan & Andrew W. Lo, 2001. "When Is Time Continuous?," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar(Volume II), chapter 3, pages 71-102, World Scientific Publishing Co. Pte. Ltd..
    5. Emmanuel Temam & Emmanuel Gobet, 2001. "Discrete time hedging errors for options with irregular payoffs," Finance and Stochastics, Springer, vol. 5(3), pages 357-367.
    6. Jacod, Jean, 2008. "Asymptotic properties of realized power variations and related functionals of semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 118(4), pages 517-559, April.
    7. Freddy Delbaen & Peter Grandits & Thorsten Rheinländer & Dominick Samperi & Martin Schweizer & Christophe Stricker, 2002. "Exponential Hedging and Entropic Penalties," Mathematical Finance, Wiley Blackwell, vol. 12(2), pages 99-123, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Flavio Angelini & Stefano Herzel, 2015. "Evaluating discrete dynamic strategies in affine models," Quantitative Finance, Taylor & Francis Journals, vol. 15(2), pages 313-326, February.
    2. Thai Huu Nguyen & Serguei Pergamenschchikov, 2015. "Approximate hedging with proportional transaction costs in stochastic volatility models with jumps," Papers 1505.02627, arXiv.org, revised Sep 2019.
    3. Masaaki Fukasawa, 2014. "Efficient discretization of stochastic integrals," Finance and Stochastics, Springer, vol. 18(1), pages 175-208, January.
    4. Mats Brod'en & Magnus Wiktorsson, 2010. "Hedging Errors Induced by Discrete Trading Under an Adaptive Trading Strategy," Papers 1004.4526, arXiv.org.
    5. Mats Brod'en & Peter Tankov, 2010. "Tracking errors from discrete hedging in exponential L\'evy models," Papers 1003.0709, arXiv.org.
    6. Alev{s} v{C}ern'y & Stephan Denkl & Jan Kallsen, 2013. "Hedging in L\'evy Models and the Time Step Equivalent of Jumps," Papers 1309.7833, arXiv.org, revised Jul 2017.
    7. Batten, Jonathan A. & Kinateder, Harald & Szilagyi, Peter G. & Wagner, Niklas F., 2021. "Hedging stocks with oil," Energy Economics, Elsevier, vol. 93(C).
    8. Masaaki Fukasawa, 2012. "Efficient Discretization of Stochastic Integrals," Papers 1204.0637, arXiv.org.
    9. Simon F'ecamp & Joseph Mikael & Xavier Warin, 2019. "Risk management with machine-learning-based algorithms," Papers 1902.05287, arXiv.org, revised Aug 2020.
    10. Farzad Alavi Fard & Firmin Doko Tchatoka & Sivagowry Sriananthakumar, 2021. "Maximum Entropy Evaluation of Asymptotic Hedging Error under a Generalised Jump-Diffusion Model," JRFM, MDPI, vol. 14(3), pages 1-19, February.
    11. Takafumi Amaba, 2014. "A Discrete-Time Clark-Ocone Formula for Poisson Functionals," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 21(2), pages 97-120, May.
    12. Wang, Wensheng, 2019. "Asymptotics for discrete time hedging errors under fractional Black–Scholes models," Statistics & Probability Letters, Elsevier, vol. 149(C), pages 160-170.
    13. Johannes Ruf & Weiguan Wang, 2020. "Hedging with Linear Regressions and Neural Networks," Papers 2004.08891, arXiv.org, revised Jun 2021.
    14. Huu Thai Nguyen & Serguei Pergamenchtchikov, 2014. "Approximate hedging with proportional transaction costs in stochastic volatility models with jumps," Working Papers hal-00979199, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alev{s} v{C}ern'y & Stephan Denkl & Jan Kallsen, 2013. "Hedging in L\'evy Models and the Time Step Equivalent of Jumps," Papers 1309.7833, arXiv.org, revised Jul 2017.
    2. Mats Brod'en & Peter Tankov, 2010. "Tracking errors from discrete hedging in exponential L\'evy models," Papers 1003.0709, arXiv.org.
    3. Cl'ement M'enass'e & Peter Tankov, 2015. "Asymptotic indifference pricing in exponential L\'evy models," Papers 1502.03359, arXiv.org, revised Feb 2015.
    4. Masaaki Fukasawa, 2014. "Efficient discretization of stochastic integrals," Finance and Stochastics, Springer, vol. 18(1), pages 175-208, January.
    5. Thorsten Rheinländer & Jenny Sexton, 2011. "Hedging Derivatives," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8062, August.
    6. Podolskij, Mark & Vetter, Mathias, 2009. "Bipower-type estimation in a noisy diffusion setting," Stochastic Processes and their Applications, Elsevier, vol. 119(9), pages 2803-2831, September.
    7. Almut Veraart & Luitgard Veraart, 2012. "Stochastic volatility and stochastic leverage," Annals of Finance, Springer, vol. 8(2), pages 205-233, May.
    8. Kim, Jihyun & Meddahi, Nour, 2020. "Volatility regressions with fat tails," Journal of Econometrics, Elsevier, vol. 218(2), pages 690-713.
    9. Mats Brod'en & Magnus Wiktorsson, 2010. "Hedging Errors Induced by Discrete Trading Under an Adaptive Trading Strategy," Papers 1004.4526, arXiv.org.
    10. Xiu, Dacheng, 2010. "Quasi-maximum likelihood estimation of volatility with high frequency data," Journal of Econometrics, Elsevier, vol. 159(1), pages 235-250, November.
    11. Stefan Geiss & Emmanuel Gobet, 2010. "Fractional smoothness and applications in finance," Papers 1004.3577, arXiv.org.
    12. Aleksey Kolokolov & Giulia Livieri & Davide Pirino, 2022. "Testing for Endogeneity of Irregular Sampling Schemes," CEIS Research Paper 547, Tor Vergata University, CEIS, revised 19 Dec 2022.
    13. Hounyo, Ulrich & Gonçalves, Sílvia & Meddahi, Nour, 2017. "Bootstrapping Pre-Averaged Realized Volatility Under Market Microstructure Noise," Econometric Theory, Cambridge University Press, vol. 33(4), pages 791-838, August.
    14. Neil Shephard & Kevin Sheppard, 2012. "Efficient and feasible inference for the components of financial variation using blocked multipower variation," Economics Series Working Papers 593, University of Oxford, Department of Economics.
    15. Jacod, Jean & Li, Yingying & Mykland, Per A. & Podolskij, Mark & Vetter, Mathias, 2009. "Microstructure noise in the continuous case: The pre-averaging approach," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2249-2276, July.
    16. Palandri, Alessandro, 2015. "Do negative and positive equity returns share the same volatility dynamics?," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 486-505.
    17. Stefan Geiss & Emmanuel Gobet, 2011. "Fractional smoothness and applications in Finance," Post-Print hal-00474803, HAL.
    18. Andersen, Torben G. & Bollerslev, Tim & Huang, Xin, 2011. "A reduced form framework for modeling volatility of speculative prices based on realized variation measures," Journal of Econometrics, Elsevier, vol. 160(1), pages 176-189, January.
    19. Jihyun Kim & Nour Meddahi, 2020. "Volatility Regressions with Fat Tails," Post-Print hal-03142647, HAL.
    20. Almut Veraart, 2011. "How precise is the finite sample approximation of the asymptotic distribution of realised variation measures in the presence of jumps?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(3), pages 253-291, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:119:y:2009:i:6:p:2004-2027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.