IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v118y2008i5p864-895.html
   My bibliography  Save this article

Stability of infinite dimensional stochastic evolution equations with memory and Markovian jumps

Author

Listed:
  • Luo, Jiaowan
  • Liu, Kai

Abstract

A strong solutions approximation approach for mild solutions of stochastic functional differential equations with Markovian switching driven by Lévy martingales in Hilbert spaces is considered. The Razumikhin-Lyapunov type function methods and comparison principles are studied in pursuit of sufficient conditions for the moment exponential stability and almost sure exponential stability of equations in which we are interested. The results of [A.V. Svishchuk, Yu.I. Kazmerchuk, Stability of stochastic delay equations of Itô form with jumps and Markovian switchings, and their applications in finance, Theor. Probab. Math. Statist. 64 (2002) 167-178] are generalized and improved as a special case of our theory.

Suggested Citation

  • Luo, Jiaowan & Liu, Kai, 2008. "Stability of infinite dimensional stochastic evolution equations with memory and Markovian jumps," Stochastic Processes and their Applications, Elsevier, vol. 118(5), pages 864-895, May.
  • Handle: RePEc:eee:spapps:v:118:y:2008:i:5:p:864-895
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(07)00113-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mao, Xuerong, 1999. "Stability of stochastic differential equations with Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 79(1), pages 45-67, January.
    2. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    3. Elisa Nicolato & Emmanouil Venardos, 2003. "Option Pricing in Stochastic Volatility Models of the Ornstein‐Uhlenbeck type," Mathematical Finance, Wiley Blackwell, vol. 13(4), pages 445-466, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Liping & Li, Zhi, 2018. "Stochastic fractional evolution equations with fractional brownian motion and infinite delay," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 36-46.
    2. Surendra Kumar & Shobha Yadav, 2021. "Infinite-delayed stochastic impulsive differential systems with Poisson jumps," Indian Journal of Pure and Applied Mathematics, Springer, vol. 52(2), pages 344-362, June.
    3. Huabin Chen, 2015. "The existence and exponential stability for neutral stochastic partial differential equations with infinite delay and poisson jump," Indian Journal of Pure and Applied Mathematics, Springer, vol. 46(2), pages 197-217, April.
    4. Cui, Jing & Yan, Litan & Sun, Xichao, 2011. "Exponential stability for neutral stochastic partial differential equations with delays and Poisson jumps," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1970-1977.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laurent, Sébastien & Shi, Shuping, 2020. "Volatility estimation and jump detection for drift–diffusion processes," Journal of Econometrics, Elsevier, vol. 217(2), pages 259-290.
    2. Fred Espen Benth & Martin Groth & Rodwell Kufakunesu, 2007. "Valuing Volatility and Variance Swaps for a Non-Gaussian Ornstein-Uhlenbeck Stochastic Volatility Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(4), pages 347-363.
    3. Takuji Arai & Yuto Imai, 2024. "Option pricing for Barndorff-Nielsen and Shephard model by supervised deep learning," Papers 2402.00445, arXiv.org.
    4. Michael Roberts & Indranil SenGupta, 2020. "Sequential hypothesis testing in machine learning, and crude oil price jump size detection," Papers 2004.08889, arXiv.org, revised Dec 2020.
    5. Griffin, J.E. & Steel, M.F.J., 2010. "Bayesian inference with stochastic volatility models using continuous superpositions of non-Gaussian Ornstein-Uhlenbeck processes," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2594-2608, November.
    6. Piotr Szczepocki, 2020. "Application of iterated filtering to stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck process," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 173-187, June.
    7. Karl Friedrich Hofmann & Thorsten Schulz, 2016. "A General Ornstein–Uhlenbeck Stochastic Volatility Model With Lévy Jumps," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(08), pages 1-23, December.
    8. Ying Jiao & Chunhua Ma & Simone Scotti & Chao Zhou, 2018. "The Alpha-Heston Stochastic Volatility Model," Papers 1812.01914, arXiv.org.
    9. Neil Shephard, 2005. "Stochastic Volatility," Economics Papers 2005-W17, Economics Group, Nuffield College, University of Oxford.
    10. Friedrich Hubalek & Martin Keller-Ressel & Carlo Sgarra, 2014. "Geometric Asian Option Pricing in General Affine Stochastic Volatility Models with Jumps," Papers 1407.2514, arXiv.org.
    11. Michele Leonardo Bianchi & Svetlozar T. Rachev & Frank J. Fabozzi, 2018. "Calibrating the Italian Smile with Time-Varying Volatility and Heavy-Tailed Models," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 339-378, March.
    12. Raknerud, Arvid & Skare, Øivind, 2012. "Indirect inference methods for stochastic volatility models based on non-Gaussian Ornstein–Uhlenbeck processes," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3260-3275.
    13. S. Kuchuk-Iatsenko & Y. Mishura & Y. Munchak, 2016. "Application of Malliavin calculus to exact and approximate option pricing under stochastic volatility," Papers 1608.00230, arXiv.org.
    14. Finlay, Richard & Seneta, Eugene, 2012. "A Generalized Hyperbolic model for a risky asset with dependence," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2164-2169.
    15. Ole E. Barndorff-Nielsen & Almut E. D. Veraart, 2009. "Stochastic volatility of volatility in continuous time," CREATES Research Papers 2009-25, Department of Economics and Business Economics, Aarhus University.
    16. Dilip Madan, 2009. "A tale of two volatilities," Review of Derivatives Research, Springer, vol. 12(3), pages 213-230, October.
    17. Habtemicael, Semere & SenGupta, Indranil, 2014. "Ornstein–Uhlenbeck processes for geophysical data analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 147-156.
    18. Ying Jiao & Chunhua Ma & Simone Scotti & Chao Zhou, 2021. "The Alpha‐Heston stochastic volatility model," Mathematical Finance, Wiley Blackwell, vol. 31(3), pages 943-978, July.
    19. Masuda, H. & Yoshida, N., 2005. "Asymptotic expansion for Barndorff-Nielsen and Shephard's stochastic volatility model," Stochastic Processes and their Applications, Elsevier, vol. 115(7), pages 1167-1186, July.
    20. Gianluca Fusai & Ioannis Kyriakou, 2016. "General Optimized Lower and Upper Bounds for Discrete and Continuous Arithmetic Asian Options," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 531-559, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:118:y:2008:i:5:p:864-895. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.