IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/202114.html
   My bibliography  Save this paper

Forecasting Realized Volatility of International REITs: The Role of Realized Skewness and Realized Kurtosis

Author

Listed:
  • Matteo Bonato

    (Department of Economics and Econometrics, University of Johannesburg, Auckland Park, South Africa; IPAG Business School, 184 Boulevard Saint-Germain, 75006 Paris, France)

  • Oguzhan Cepni

    (Copenhagen Business School, Department of Economics, Porcelaenshaven 16A, Frederiksberg DK-2000, Denmark; Central Bank of the Republic of Turkey, Haci Bayram Mah. Istiklal Cad. No:10 06050, Ankara, Turkey)

  • Rangan Gupta

    (Department of Economics, University of Pretoria, Pretoria, 0002, South Africa)

  • Christian Pierdzioch

    (Department of Economics, Helmut Schmidt University, Holstenhofweg 85, P.O.B. 700822, 22008 Hamburg, Germany)

Abstract

We use an international dataset on 5-minutes interval intraday data covering nine leading markets and regions to construct measures of realized volatility, realized jumps, realized skewness, and realized kurtosis of returns of international Real Estate Investment Trusts (REITs) over the daily period of September, 2008 to August, 2020. We study out-of-sample the predictive value of realized skewness and realized kurtosis for realized volatility over and above realized jumps, where we also differentiate between measures of ``good" realized volatility and ``bad" realized volatility. We find that realized skewness and realized kurtosis significantly improve forecasting performance at a daily, weekly, and monthly forecast horizon, and that their contribution to forecasting performance outweighs in terms of significance the contribution of realized jumps. Our results have important implications for investors and policymakers.

Suggested Citation

  • Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2021. "Forecasting Realized Volatility of International REITs: The Role of Realized Skewness and Realized Kurtosis," Working Papers 202114, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:202114
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Omokolade Akinsomi, 2020. "How resilient are REITs to a pandemic? The COVID-19 effect," Journal of Property Investment & Finance, Emerald Group Publishing Limited, vol. 39(1), pages 19-24, July.
    2. Elie Bouri & Riza Demirer & Rangan Gupta & Christian Pierdzioch, 2020. "Infectious Diseases, Market Uncertainty and Oil Market Volatility," Energies, MDPI, vol. 13(16), pages 1-8, August.
    3. John Cotter & Simon Stevenson, 2008. "Modeling Long Memory in REITs," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 36(3), pages 533-554, September.
    4. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
    5. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    6. Demirer, Riza & Gupta, Rangan & Suleman, Tahir & Wohar, Mark E., 2018. "Time-varying rare disaster risks, oil returns and volatility," Energy Economics, Elsevier, vol. 75(C), pages 239-248.
    7. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2019. "Forecasting (downside and upside) realized exchange-rate volatility: Is there a role for realized skewness and kurtosis?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 532(C).
    8. Bryan Kelly & Hao Jiang, 2014. "Editor's Choice Tail Risk and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 27(10), pages 2841-2871.
    9. Marfatia, Hardik A. & Gupta, Rangan & Cakan, Esin, 2017. "The international REIT’s time-varying response to the U.S. monetary policy and macroeconomic surprises," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 640-653.
    10. Mawuli Segnon & Rangan Gupta & Keagile Lesame & Mark E. Wohar, 2021. "High-Frequency Volatility Forecasting of US Housing Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 62(2), pages 283-317, February.
    11. Odusami, Babatunde O., 2021. "Volatility jumps and their determinants in REIT returns," Journal of Economics and Business, Elsevier, vol. 113(C).
    12. Amaya, Diego & Christoffersen, Peter & Jacobs, Kris & Vasquez, Aurelio, 2015. "Does realized skewness predict the cross-section of equity returns?," Journal of Financial Economics, Elsevier, vol. 118(1), pages 135-167.
    13. Gkillas, Konstantinos & Boako, Gideon & Vortelinos, Dimitrios & Vasiliadis, Lavrentios, 2020. "Non-parametric quantile dependencies between volatility discontinuities and political risk," Finance Research Letters, Elsevier, vol. 32(C).
    14. Jian Zhou & Zhixin Kang, 2011. "A Comparison of Alternative Forecast Models of REIT Volatility," The Journal of Real Estate Finance and Economics, Springer, vol. 42(3), pages 275-294, April.
    15. Bollerslev, Tim & Russell, Jeffrey & Watson, Mark (ed.), 2010. "Volatility and Time Series Econometrics: Essays in Honor of Robert Engle," OUP Catalogue, Oxford University Press, number 9780199549498.
    16. Rietz, Thomas A., 1988. "The equity risk premium a solution," Journal of Monetary Economics, Elsevier, vol. 22(1), pages 117-131, July.
    17. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    18. Nazlioglu, Saban & Gupta, Rangan & Gormus, Alper & Soytas, Ugur, 2020. "Price and volatility linkages between international REITs and oil markets," Energy Economics, Elsevier, vol. 88(C).
    19. Rangan Gupta & Tahir Suleman & Mark E. Wohar, 2019. "Exchange rate returns and volatility: the role of time-varying rare disaster risks," The European Journal of Finance, Taylor & Francis Journals, vol. 25(2), pages 190-203, January.
    20. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    21. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    22. Jian Zhou, 2020. "A comparison of realised measures for daily REIT volatility," Journal of Property Research, Taylor & Francis Journals, vol. 37(1), pages 1-24, January.
    23. Mei, Dexiang & Liu, Jing & Ma, Feng & Chen, Wang, 2017. "Forecasting stock market volatility: Do realized skewness and kurtosis help?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 153-159.
    24. Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2018. "Forecasting (Good and Bad) Realized Exchange-Rate Volatility: Is there a Role for Realized Skewness and Kurtosis?," Working Papers 201879, University of Pretoria, Department of Economics.
    25. Robert J. Barro, 2006. "Rare Disasters and Asset Markets in the Twentieth Century," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 121(3), pages 823-866.
    26. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
    27. Don Bredin & Gerard O’Reilly & Simon Stevenson, 2007. "Monetary Shocks and REIT Returns," The Journal of Real Estate Finance and Economics, Springer, vol. 35(3), pages 315-331, October.
    28. Longstaff, Francis A. & Piazzesi, Monika, 2004. "Corporate earnings and the equity premium," Journal of Financial Economics, Elsevier, vol. 74(3), pages 401-421, December.
    29. John Lintner, 1965. "Security Prices, Risk, And Maximal Gains From Diversification," Journal of Finance, American Finance Association, vol. 20(4), pages 587-615, December.
    30. Andrew Ang & Robert J. Hodrick & Yuhang Xing & Xiaoyan Zhang, 2006. "The Cross‐Section of Volatility and Expected Returns," Journal of Finance, American Finance Association, vol. 61(1), pages 259-299, February.
    31. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    32. Elie Bouri & Rangan Gupta & Christian Pierdzioch & Afees A. Salisu, 2021. "El Nino and Forecastability of Oil-Price Realized Volatility," Working Papers 202105, University of Pretoria, Department of Economics.
    33. Jian Zhou, 2011. "Long memory in REIT volatility revisited: genuine or spurious, and self-similar?," Journal of Property Research, Taylor & Francis Journals, vol. 28(3), pages 213-232, January.
    34. Devaney, Michael, 2001. "Time varying risk premia for real estate investment trusts: A GARCH-M model," The Quarterly Review of Economics and Finance, Elsevier, vol. 41(3), pages 335-346.
    35. Campbell R. Harvey & Akhtar Siddique, 2000. "Conditional Skewness in Asset Pricing Tests," Journal of Finance, American Finance Association, vol. 55(3), pages 1263-1295, June.
    36. Kraus, Alan & Litzenberger, Robert H, 1976. "Skewness Preference and the Valuation of Risk Assets," Journal of Finance, American Finance Association, vol. 31(4), pages 1085-1100, September.
    37. Assaf, Ata, 2015. "Long memory and level shifts in REITs returns and volatility," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 172-182.
    38. Jian Zhou, 2017. "Forecasting REIT volatility with high-frequency data: a comparison of alternative methods," Applied Economics, Taylor & Francis Journals, vol. 49(26), pages 2590-2605, June.
    39. Ivelina Pavlova & Jang Hyung Cho & A.M. Parhizgari & William G. Hardin, 2014. "Long memory in REIT volatility and changes in the unconditional mean: a modified FIGARCH approach," Journal of Property Research, Taylor & Francis Journals, vol. 31(4), pages 315-332, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mensi, Walid & Ko, Hee-Un & Sensoy, Ahmet & Kang, Sang Hoon, 2024. "Higher-order moment connectedness between stock and commodity markets and portfolio management," Resources Policy, Elsevier, vol. 89(C).
    2. Cui, Jinxin & Maghyereh, Aktham, 2023. "Time-frequency dependence and connectedness among global oil markets: Fresh evidence from higher-order moment perspective," Journal of Commodity Markets, Elsevier, vol. 30(C).
    3. Salisu, Afees A. & Gupta, Rangan & Bouri, Elie, 2023. "Testing the forecasting power of global economic conditions for the volatility of international REITs using a GARCH-MIDAS approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 88(C), pages 303-314.
    4. Bonato, Matteo & Çepni, Oğuzhan & Gupta, Rangan & Pierdzioch, Christian, 2021. "Do oil-price shocks predict the realized variance of U.S. REITs?," Energy Economics, Elsevier, vol. 104(C).
    5. Jiqian Wang & Rangan Gupta & Oğuzhan Çepni & Feng Ma, 2023. "Forecasting international REITs volatility: the role of oil-price uncertainty," The European Journal of Finance, Taylor & Francis Journals, vol. 29(14), pages 1579-1597, September.
    6. Matteo Foglia & Vasilios Plakandaras & Rangan Gupta & Elie Bouri, 2023. "Multi-Layer Spillovers between Volatility and Skewness in International Stock Markets Over a Century of Data: The Role of Disaster Risks," Working Papers 202337, University of Pretoria, Department of Economics.
    7. Zhang, Hongwei & Zhao, Xinyi & Gao, Wang & Niu, Zibo, 2023. "The role of higher moments in predicting China's oil futures volatility: Evidence from machine learning models," Journal of Commodity Markets, Elsevier, vol. 32(C).
    8. Elie Bouri & Rangan Gupta & Asingamaanda Liphadzi & Christian Pierdzioch, 2024. "Forecasting Stock Returns Volatility of the G7 Over Centuries: The Role of Climate Risks," Working Papers 202424, University of Pretoria, Department of Economics.
    9. Shixuan Wang & Rangan Gupta & Matteo Bonato & Oguzhan Cepni, 2022. "The Effects of Conventional and Unconventional Monetary Policy Shocks on US REITs Moments: Evidence from VARs with Functional Shocks," Working Papers 202219, University of Pretoria, Department of Economics.
    10. Li, Xiaodan & Gong, Xue & Ge, Futing & Huang, Jingjing, 2024. "Forecasting stock volatility using pseudo-out-of-sample information," International Review of Economics & Finance, Elsevier, vol. 90(C), pages 123-135.
    11. Waqas Hanif & Hee-Un Ko & Linh Pham & Sang Hoon Kang, 2023. "Dynamic connectedness and network in the high moments of cryptocurrency, stock, and commodity markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-40, December.
    12. Cui, Jinxin & Maghyereh, Aktham, 2023. "Higher-order moment risk connectedness and optimal investment strategies between international oil and commodity futures markets: Insights from the COVID-19 pandemic and Russia-Ukraine conflict," International Review of Financial Analysis, Elsevier, vol. 86(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bonato, Matteo & Çepni, Oğuzhan & Gupta, Rangan & Pierdzioch, Christian, 2021. "Do oil-price shocks predict the realized variance of U.S. REITs?," Energy Economics, Elsevier, vol. 104(C).
    2. Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2020. "Uncertainty due to Infectious Diseases and Forecastability of the Realized Variance of US REITs: A Note," Working Papers 202099, University of Pretoria, Department of Economics.
    3. Jiqian Wang & Rangan Gupta & Oğuzhan Çepni & Feng Ma, 2023. "Forecasting international REITs volatility: the role of oil-price uncertainty," The European Journal of Finance, Taylor & Francis Journals, vol. 29(14), pages 1579-1597, September.
    4. Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2018. "Forecasting (Good and Bad) Realized Exchange-Rate Volatility: Is there a Role for Realized Skewness and Kurtosis?," Working Papers 201879, University of Pretoria, Department of Economics.
    5. Bonato, Matteo & Cepni, Oguzhan & Gupta, Rangan & Pierdzioch, Christian, 2023. "Climate risks and state-level stock market realized volatility," Journal of Financial Markets, Elsevier, vol. 66(C).
    6. Zhang, Hongwei & Zhao, Xinyi & Gao, Wang & Niu, Zibo, 2023. "The role of higher moments in predicting China's oil futures volatility: Evidence from machine learning models," Journal of Commodity Markets, Elsevier, vol. 32(C).
    7. Bonato, Matteo & Cepni, Oguzhan & Gupta, Rangan & Pierdzioch, Christian, 2023. "Climate risks and realized volatility of major commodity currency exchange rates," Journal of Financial Markets, Elsevier, vol. 62(C).
    8. Salisu, Afees A. & Gupta, Rangan & Bouri, Elie, 2023. "Testing the forecasting power of global economic conditions for the volatility of international REITs using a GARCH-MIDAS approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 88(C), pages 303-314.
    9. Luo, Jiawen & Demirer, Riza & Gupta, Rangan & Ji, Qiang, 2022. "Forecasting oil and gold volatilities with sentiment indicators under structural breaks," Energy Economics, Elsevier, vol. 105(C).
    10. Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2024. "Business applications and state‐level stock market realized volatility: A forecasting experiment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 456-472, March.
    11. Lu, Xinjie & Ma, Feng & Wang, Jianqiong & Dong, Dayong, 2022. "Singlehanded or joint race? Stock market volatility prediction," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 734-754.
    12. Matteo Bonato & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2020. "Investor Happiness and Predictability of the Realized Volatility of Oil Price," Sustainability, MDPI, vol. 12(10), pages 1-11, May.
    13. Salisu, Afees A. & Pierdzioch, Christian & Gupta, Rangan, 2022. "Oil tail risks and the forecastability of the realized variance of oil-price: Evidence from over 150 years of data," Finance Research Letters, Elsevier, vol. 46(PB).
    14. Shixuan Wang & Rangan Gupta & Matteo Bonato & Oguzhan Cepni, 2022. "The Effects of Conventional and Unconventional Monetary Policy Shocks on US REITs Moments: Evidence from VARs with Functional Shocks," Working Papers 202219, University of Pretoria, Department of Economics.
    15. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, December.
    16. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    17. José Afonso Faias & Juan Arismendi Zambrano, 2022. "Equity Risk Premium Predictability from Cross-Sectoral Downturns [International asset allocation with regime shifts]," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 12(3), pages 808-842.
    18. Harris, Richard D.F. & Nguyen, Linh H. & Stoja, Evarist, 2019. "Systematic extreme downside risk," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 128-142.
    19. Demirer, Riza & Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2019. "Time-varying risk aversion and realized gold volatility," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    20. Matteo Bonato & Oğuzhan Çepni & Rangan Gupta & Christian Pierdzioch, 2023. "El Niño, La Niña, and forecastability of the realized variance of agricultural commodity prices: Evidence from a machine learning approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 785-801, July.

    More about this item

    Keywords

    REITs; International data; Realized volatility; Forecasting;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:202114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.