Using the conditional volatility channel to improve the accuracy of aggregate equity return predictions
Author
Abstract
Suggested Citation
DOI: 10.1007/s00181-020-01882-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Martin Lettau & Stijn Van Nieuwerburgh, 2008.
"Reconciling the Return Predictability Evidence,"
The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1607-1652, July.
- Martin Lettau & Stijn Van Nieuwerburgh, 2006. "Reconciling the Return Predictability Evidence," NBER Working Papers 12109, National Bureau of Economic Research, Inc.
- Martin Lettau & Stijn Van Nieuwerburgh, 2006. "Reconciling the Return Predictability Evidence," 2006 Meeting Papers 29, Society for Economic Dynamics.
- Ivo Welch & Amit Goyal, 2008.
"A Comprehensive Look at The Empirical Performance of Equity Premium Prediction,"
The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
- Amit Goyal & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," Yale School of Management Working Papers amz2412, Yale School of Management, revised 01 Jan 2006.
- Amit Goyal & Ivo Welch & Athanasse Zafirov, 2021. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction II," Swiss Finance Institute Research Paper Series 21-85, Swiss Finance Institute.
- Amit Goval & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," NBER Working Papers 10483, National Bureau of Economic Research, Inc.
- Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002.
"Bayesian Analysis of Stochastic Volatility Models,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
- Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 371-389, October.
- Andrew Ang & Geert Bekaert, 2007.
"Stock Return Predictability: Is it There?,"
The Review of Financial Studies, Society for Financial Studies, vol. 20(3), pages 651-707.
- Andrew Ang & Geert Bekaert, 2001. "Stock Return Predictability: Is it There?," NBER Working Papers 8207, National Bureau of Economic Research, Inc.
- Jose A. Lopez, 1999.
"Methods for evaluating value-at-risk estimates,"
Economic Review, Federal Reserve Bank of San Francisco, pages 3-17.
- Jose A. Lopez, 1998. "Methods for evaluating value-at-risk estimates," Economic Policy Review, Federal Reserve Bank of New York, vol. 4(Oct), pages 119-124.
- Jose A. Lopez, 1998. "Methods for evaluating value-at-risk estimates," Research Paper 9802, Federal Reserve Bank of New York.
- John Y. Campbell, Robert J. Shiller, 1988.
"The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors,"
The Review of Financial Studies, Society for Financial Studies, vol. 1(3), pages 195-228.
- Robert J. Shiller & John Y. Campbell, 1986. "The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors," Cowles Foundation Discussion Papers 812, Cowles Foundation for Research in Economics, Yale University.
- John Y. Campbell & Robert J. Shiller, 1986. "The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors," NBER Working Papers 2100, National Bureau of Economic Research, Inc.
- Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998.
"Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
- Sangjoon Kim, Neil Shephard & Siddhartha Chib, "undated". "Stochastic volatility: likelihood inference and comparison with ARCH models," Economics Papers W26, revised version of W, Economics Group, Nuffield College, University of Oxford.
- Sangjoon Kim & Neil Shephard, 1994. "Stochastic volatility: likelihood inference and comparison with ARCH models," Economics Papers 3., Economics Group, Nuffield College, University of Oxford.
- Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1996. "Stochastic Volatility: Likelihood Inference And Comparison With Arch Models," Econometrics 9610002, University Library of Munich, Germany.
- Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
- Ľuboš Pástor & Robert F. Stambaugh, 2009.
"Predictive Systems: Living with Imperfect Predictors,"
Journal of Finance, American Finance Association, vol. 64(4), pages 1583-1628, August.
- Lubos Pastor & Robert F. Stambaugh, 2007. "Predictive Systems: Living with Imperfect Predictors," NBER Working Papers 12814, National Bureau of Economic Research, Inc.
- Stambaugh, Robert F. & Pástor, Luboš, 2007. "Predictive Systems: Living with Imperfect Predictors," CEPR Discussion Papers 6076, C.E.P.R. Discussion Papers.
- Lubos Pastor & Robert F. Stambaugh, 2008. "Predictive Systems: Living with Imperfect Predictors," NBER Working Papers 13804, National Bureau of Economic Research, Inc.
- Maheu, John M. & Song, Yong & Yang, Qiao, 2020.
"Oil price shocks and economic growth: The volatility link,"
International Journal of Forecasting, Elsevier, vol. 36(2), pages 570-587.
- John M. Maheu & Yong Song & Qiao Yang, 2018. "Oil Price Shocks and Economic Growth: The Volatility Link," Working Paper series 18-03, Rimini Centre for Economic Analysis.
- Maheu, John M & Yang, Qiao & Song, Yong, 2018. "Oil Price Shocks and Economic Growth: The Volatility Link," MPRA Paper 83779, University Library of Munich, Germany.
- Maheu, John M & Song, Yong & Yang, Qiao, 2018. "Oil Price Shocks and Economic Growth: The Volatility Link," MPRA Paper 83999, University Library of Munich, Germany.
- Foster, F Douglas & Smith, Tom & Whaley, Robert E, 1997. "Assessing Goodness-of-Fit of Asset Pricing Models: The Distribution of the Maximal R-Squared," Journal of Finance, American Finance Association, vol. 52(2), pages 591-607, June.
- Stambaugh, Robert F., 1999.
"Predictive regressions,"
Journal of Financial Economics, Elsevier, vol. 54(3), pages 375-421, December.
- Robert F. Stambaugh, 1999. "Predictive Regressions," NBER Technical Working Papers 0240, National Bureau of Economic Research, Inc.
- Pettenuzzo, Davide & Timmermann, Allan & Valkanov, Rossen, 2014.
"Forecasting stock returns under economic constraints,"
Journal of Financial Economics, Elsevier, vol. 114(3), pages 517-553.
- Timmermann, Allan & Pettenuzzo, Davide & Valkanov, Rossen, 2013. "Forecasting Stock Returns under Economic Constraints," CEPR Discussion Papers 9377, C.E.P.R. Discussion Papers.
- Davide Pettenuzzo & Allan Timmermann & Rossen Valkanov, 2013. "Forecasting Stock Returns under Economic Constraints," Working Papers 57, Brandeis University, Department of Economics and International Business School.
- Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comments: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 413-417, October.
- Tilmann Gneiting & Roopesh Ranjan, 2011. "Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 411-422, July.
- Chan, Joshua C.C., 2013.
"Moving average stochastic volatility models with application to inflation forecast,"
Journal of Econometrics, Elsevier, vol. 176(2), pages 162-172.
- Joshua C C Chan, 2012. "Moving Average Stochastic Volatility Models with Application to Inflation Forecast," ANU Working Papers in Economics and Econometrics 2012-591, Australian National University, College of Business and Economics, School of Economics.
- Joshua C.C. Chan, 2013. "Moving Average Stochastic Volatility Models with Application to Inflation Forecast," CAMA Working Papers 2013-31, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Stock, James H & Watson, Mark W, 1996.
"Evidence on Structural Instability in Macroeconomic Time Series Relations,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
- James H. Stock & Mark W. Watson, 1994. "Evidence on Structural Instability in Macroeconomic Time Series Relations," NBER Technical Working Papers 0164, National Bureau of Economic Research, Inc.
- James H. Stock & Mark W. Watson, 1994. "Evidence on structural instability in macroeconomic times series relations," Working Paper Series, Macroeconomic Issues 94-13, Federal Reserve Bank of Chicago.
- John Y. Campbell & Samuel B. Thompson, 2008.
"Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?,"
The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
- Campbell, John & Thompson, Samuel P., 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," Scholarly Articles 2622619, Harvard University Department of Economics.
- David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
- Durbin, James & Koopman, Siem Jan, 2012.
"Time Series Analysis by State Space Methods,"
OUP Catalogue,
Oxford University Press,
edition 2, number 9780199641178.
- Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543.
- Siem Jan Koopman & André Lucas & Marcel Scharth, 2016.
"Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models,"
The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 97-110, March.
- Siem Jan Koopman & Andre Lucas & Marcel Scharth, 2012. "Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models," Tinbergen Institute Discussion Papers 12-020/4, Tinbergen Institute.
- Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
- Paye, Bradley S., 2012. "‘Déjà vol’: Predictive regressions for aggregate stock market volatility using macroeconomic variables," Journal of Financial Economics, Elsevier, vol. 106(3), pages 527-546.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Lo, Andrew W & MacKinlay, A Craig, 1990.
"Data-Snooping Biases in Tests of Financial Asset Pricing Models,"
The Review of Financial Studies, Society for Financial Studies, vol. 3(3), pages 431-467.
- Andrew W. Lo & A. Craig MacKinlay, 1989. "Data-Snooping Biases in Tests of Financial Asset Pricing Models," NBER Working Papers 3001, National Bureau of Economic Research, Inc.
- Lo, Andrew W. (Andrew Wen-Chuan) & MacKinlay, Archie Craig, 1955-, 1989. "Data-snooping biases in tests of financial asset pricing models," Working papers 3020-89., Massachusetts Institute of Technology (MIT), Sloan School of Management.
- Dangl, Thomas & Halling, Michael, 2012. "Predictive regressions with time-varying coefficients," Journal of Financial Economics, Elsevier, vol. 106(1), pages 157-181.
- Swanson, Norman R., 1998. "Money and output viewed through a rolling window," Journal of Monetary Economics, Elsevier, vol. 41(3), pages 455-474, May.
- Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
- Michael Johannes & Arthur Korteweg & Nicholas Polson, 2014. "Sequential Learning, Predictability, and Optimal Portfolio Returns," Journal of Finance, American Finance Association, vol. 69(2), pages 611-644, April.
- Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
- Gneiting, Tilmann & Ranjan, Roopesh, 2011. "Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 411-422.
- K. J. Martijn Cremers, 2002. "Stock Return Predictability: A Bayesian Model Selection Perspective," The Review of Financial Studies, Society for Financial Studies, vol. 15(4), pages 1223-1249.
- Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Nonejad, Nima, 2021. "Predicting the return on the spot price of crude oil out-of-sample by conditioning on news-based uncertainty measures: Some new empirical results," Energy Economics, Elsevier, vol. 104(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nima Nonejad, 2021. "Bayesian model averaging and the conditional volatility process: an application to predicting aggregate equity returns by conditioning on economic variables," Quantitative Finance, Taylor & Francis Journals, vol. 21(8), pages 1387-1411, August.
- Nonejad, Nima, 2020. "Crude oil price volatility and equity return predictability: A comparative out-of-sample study," International Review of Financial Analysis, Elsevier, vol. 71(C).
- Nonejad, Nima, 2021. "Predicting equity premium using dynamic model averaging. Does the state–space representation matter?," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
- Nonejad, Nima, 2021. "Predicting equity premium using news-based economic policy uncertainty: Not all uncertainty changes are equally important," International Review of Financial Analysis, Elsevier, vol. 77(C).
- Nonejad, Nima, 2021. "Predicting the return on the spot price of crude oil out-of-sample by conditioning on news-based uncertainty measures: Some new empirical results," Energy Economics, Elsevier, vol. 104(C).
- Nonejad, Nima, 2023. "Conditional out-of-sample predictability of aggregate equity returns and aggregate equity return volatility using economic variables," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 91-122.
- Nonejad, Nima, 2018. "Déjà vol oil? Predicting S&P 500 equity premium using crude oil price volatility: Evidence from old and recent time-series data," International Review of Financial Analysis, Elsevier, vol. 58(C), pages 260-270.
- Nima Nonejad, 2020. "Does the price of crude oil help predict the conditional distribution of aggregate equity return?," Empirical Economics, Springer, vol. 58(1), pages 313-349, January.
- Leland E. Farmer & Lawrence Schmidt & Allan Timmermann, 2023.
"Pockets of Predictability,"
Journal of Finance, American Finance Association, vol. 78(3), pages 1279-1341, June.
- Timmermann, Allan & Farmer, Leland E. & Schmidt, Lawrence, 2018. "Pockets of Predictability," CEPR Discussion Papers 12885, C.E.P.R. Discussion Papers.
- Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
- Nonejad, Nima, 2022. "Predicting equity premium out-of-sample by conditioning on newspaper-based uncertainty measures: A comparative study," International Review of Financial Analysis, Elsevier, vol. 83(C).
- Dichtl, Hubert & Drobetz, Wolfgang & Neuhierl, Andreas & Wendt, Viktoria-Sophie, 2021. "Data snooping in equity premium prediction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 72-94.
- Mykola Babiak & Jozef Barunik, 2020.
"Deep Learning, Predictability, and Optimal Portfolio Returns,"
CERGE-EI Working Papers
wp677, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
- Mykola Babiak & Jozef Barunik, 2020. "Deep Learning, Predictability, and Optimal Portfolio Returns," Papers 2009.03394, arXiv.org, revised Jul 2021.
- Davide Pettenuzzo & Francesco Ravazzolo, 2016.
"Optimal Portfolio Choice Under Decision‐Based Model Combinations,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
- Davide Pettenuzzo & Francesco Ravazzolo, 2014. "Optimal Portfolio Choice under Decision-Based Model Combinations," Working Papers 80, Brandeis University, Department of Economics and International Business School.
- Davide Pettenuzzo & Francesco Ravazzolo, 2015. "Optimal Portfolio Choice under Decision-Based Model Combinations," Working Papers No 9/2015, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Davide Pettenuzzo & Francesco Ravazzolo, 2014. "Optimal portfolio choice under decision-based model combinations," Working Paper 2014/15, Norges Bank.
- Lawrenz, Jochen & Zorn, Josef, 2017. "Predicting international stock returns with conditional price-to-fundamental ratios," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 159-184.
- Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
- Michael Johannes & Arthur Korteweg & Nicholas Polson, 2014. "Sequential Learning, Predictability, and Optimal Portfolio Returns," Journal of Finance, American Finance Association, vol. 69(2), pages 611-644, April.
- Timmermann, Allan, 2018. "Forecasting Methods in Finance," CEPR Discussion Papers 12692, C.E.P.R. Discussion Papers.
- Allan Timmermann, 2018. "Forecasting Methods in Finance," Annual Review of Financial Economics, Annual Reviews, vol. 10(1), pages 449-479, November.
- Amélie Charles & Olivier Darné & Jae H. Kim, 2022.
"Stock return predictability: Evaluation based on interval forecasts,"
Bulletin of Economic Research, Wiley Blackwell, vol. 74(2), pages 363-385, April.
- Amélie Charles & Olivier Darné & Jae Kim, 2022. "Stock Return Predictability: Evaluation based on interval forecasts," Post-Print hal-03656310, HAL.
More about this item
Keywords
Aggregate equity returns; Conditional volatility; Density prediction accuracy; Value-at-risk;All these keywords.
JEL classification:
- C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:61:y:2021:i:2:d:10.1007_s00181-020-01882-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.