IDEAS home Printed from https://ideas.repec.org/a/tpr/restat/v101y2019i1p146-159.html
   My bibliography  Save this article

Moment-Based Tests under Parameter Uncertainty

Author

Listed:
  • Christian Bontemps

    (University of Toulouse, ENAC, and Toulouse School of Economics)

Abstract

This paper considers moment-based tests applied to estimated quantities. We propose a general class of transforms of moments to handle the parameter uncertainty problem. The construction requires only a linear correction that can be implemented in sample and remains valid for some extended families of nonsmooth moments. We reemphasize the attractiveness of working with robust moments, which lead to testing procedures that do not depend on the estimator. Furthermore, no correction is needed when considering the implied test statistic in the out-of-sample case. We apply our methodology to various examples with an emphasis on the backtesting of value-at-risk forecasts.

Suggested Citation

  • Christian Bontemps, 2019. "Moment-Based Tests under Parameter Uncertainty," The Review of Economics and Statistics, MIT Press, vol. 101(1), pages 146-159, March.
  • Handle: RePEc:tpr:restat:v:101:y:2019:i:1:p:146-159
    as

    Download full text from publisher

    File URL: http://www.mitpressjournals.org/doi/pdf/10.1162/rest_a_00745
    Download Restriction: Access to PDF is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bertrand Candelon & Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2011. "Backtesting Value-at-Risk: A GMM Duration-Based Test," Journal of Financial Econometrics, Oxford University Press, vol. 9(2), pages 314-343, Spring.
    2. Jean‐Marie Dufour & Lynda Khalaf & Marie‐Claude Beaulieu, 2003. "Exact Skewness–Kurtosis Tests for Multivariate Normality and Goodness‐of‐Fit in Multivariate Regressions with Application to Asset Pricing Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 891-906, December.
    3. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    4. Gregory Jolivet & Fabien Postel-Vinay & Jean-Marc Robin, 2006. "The Empirical Content of the Job Search Model: Labor Mobility and Wage Distributions in Europe and the U.S.$," Contributions to Economic Analysis, in: Structural Models of Wage and Employment Dynamics, pages 269-308, Emerald Group Publishing Limited.
    5. Mora, Juan & Moro-Egido, Ana I., 2008. "On specification testing of ordered discrete choice models," Journal of Econometrics, Elsevier, vol. 143(1), pages 191-205, March.
    6. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    7. Fiorentini, Gabriele & Sentana, Enrique & Calzolari, Giorgio, 2004. "On the validity of the Jarque-Bera normality test in conditionally heteroskedastic dynamic regression models," Economics Letters, Elsevier, vol. 83(3), pages 307-312, June.
    8. Javier Mencía & Enrique Sentana, 2012. "Distributional Tests in Multivariate Dynamic Models with Normal and Student-t Innovations," The Review of Economics and Statistics, MIT Press, vol. 94(1), pages 133-152, February.
    9. Amengual, Dante & Fiorentini, Gabriele & Sentana, Enrique, 2013. "Sequential estimation of shape parameters in multivariate dynamic models," Journal of Econometrics, Elsevier, vol. 177(2), pages 233-249.
    10. Skeels, Christopher L. & Vella, Francis, 1999. "A Monte Carlo investigation of the sampling behavior of conditional moment tests in Tobit and Probit models," Journal of Econometrics, Elsevier, vol. 92(2), pages 275-294, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sullivan Hu'e & Christophe Hurlin & Yang Lu, 2024. "Backtesting Expected Shortfall: Accounting for both duration and severity with bivariate orthogonal polynomials," Papers 2405.02012, arXiv.org, revised May 2024.
    2. Lu Lin & Feng Li, 2023. "Global debiased DC estimations for biased estimators via pro forma regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 726-758, June.
    3. Peter Horvath & Jia Li & Zhipeng Liao & Andrew J. Patton, 2022. "A consistent specification test for dynamic quantile models," Quantitative Economics, Econometric Society, vol. 13(1), pages 125-151, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bontemps, Christian, 2014. "Simple moment-based tests for value-at-risk models and discrete distribution," TSE Working Papers 14-535, Toulouse School of Economics (TSE).
    2. Bontemps, Christian, 2013. "Moment-Based Tests for Discrete Distributions," IDEI Working Papers 772, Institut d'Économie Industrielle (IDEI), Toulouse, revised Oct 2014.
    3. Ana-Maria Fuertes & Jose Olmo, 2016. "On Setting Day-Ahead Equity Trading Risk Limits: VaR Prediction at Market Close or Open?," JRFM, MDPI, vol. 9(3), pages 1-20, September.
    4. Gabriele Fiorentini & Enrique Sentana, 2021. "Specification tests for non‐Gaussian maximum likelihood estimators," Quantitative Economics, Econometric Society, vol. 12(3), pages 683-742, July.
    5. Christian Bontemps & Nour Meddahi, 2012. "Testing distributional assumptions: A GMM aproach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 978-1012, September.
    6. Enrique Sentana, 2018. "Volatility, Diversification and Contagion," Working Papers wp2018_1803, CEMFI.
    7. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino & Elmar Mertens, 2024. "Addressing COVID-19 Outliers in BVARs with Stochastic Volatility," The Review of Economics and Statistics, MIT Press, vol. 106(5), pages 1403-1417, September.
    8. Benjamin K. Johannsen & Elmar Mertens, 2021. "A Time‐Series Model of Interest Rates with the Effective Lower Bound," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(5), pages 1005-1046, August.
    9. Gabriele Fiorentini & Enrique Sentana, 2012. "Tests for Serial Dependence in Static, Non-Gaussian Factor Models," Working Papers wp2012_1211, CEMFI.
    10. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Nowcasting tail risk to economic activity at a weekly frequency," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 843-866, August.
    11. Fabian Krüger & Todd E. Clark & Francesco Ravazzolo, 2017. "Using Entropic Tilting to Combine BVAR Forecasts With External Nowcasts," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(3), pages 470-485, July.
    12. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2024. "Capturing Macro‐Economic Tail Risks with Bayesian Vector Autoregressions," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 56(5), pages 1099-1127, August.
    13. Martín Almuzara & Dante Amengual & Enrique Sentana, 2019. "Normality tests for latent variables," Quantitative Economics, Econometric Society, vol. 10(3), pages 981-1017, July.
    14. Fiorentini, Gabriele & Sentana, Enrique, 2019. "Consistent non-Gaussian pseudo maximum likelihood estimators," Journal of Econometrics, Elsevier, vol. 213(2), pages 321-358.
    15. Boucher, Christophe M. & Daníelsson, Jón & Kouontchou, Patrick S. & Maillet, Bertrand B., 2014. "Risk models-at-risk," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 72-92.
    16. Markku Lanne & Jani Luoto, 2017. "A New Time‐Varying Parameter Autoregressive Model for U.S. Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 49(5), pages 969-995, August.
    17. Smith Aaron, 2012. "Markov Breaks in Regression Models," Journal of Time Series Econometrics, De Gruyter, vol. 4(1), pages 1-35, May.
    18. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    19. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    20. Lazar, Emese & Zhang, Ning, 2019. "Model risk of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 74-93.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tpr:restat:v:101:y:2019:i:1:p:146-159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: The MIT Press (email available below). General contact details of provider: https://direct.mit.edu/journals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.