IDEAS home Printed from https://ideas.repec.org/p/ngi/dpaper/18-12.html
   My bibliography  Save this paper

Multivariate Stochastic Volatility with Co-Heteroscedasticity

Author

Listed:
  • Joshua Chan

    (Purdue University)

  • Arnaud Doucet

    (University of Oxford)

  • Roberto Leon-Gonzalez

    (National Graduate Institute for Policy Studies, Tokyo, Japan)

  • Rodney W. Strachan

    (University of Queensland)

Abstract

This paper develops a new methodology that decomposes shocks into homoscedastic and heteroscedastic components. This specification implies there exist linear combinations of heteroscedastic variables that eliminate heteroscedasticity. That is, these linear combinations are homoscedastic; a property we call co-heteroscedasticity. The heteroscedastic part of the model uses a multivariate stochastic volatility inverse Wishart process. The resulting model is invariant to the ordering of the variables, which we show is important for impulse response analysis but is generally important for, e.g., volatility estimation and variance decompositions. The specification allows estimation in moderately high-dimensions. The computational strategy uses a novel particle lter algorithm, a reparameterization that substantially improves algorithmic convergence and an alternating-order particle Gibbs that reduces the amount of particles needed for accurate estimation. We provide two empirical applications; one to exchange rate data and another to a large Vector Autoregression (VAR) of US macroeconomic variables. We find strong evidence for co-heteroscedasticity and, in the second application, estimate the impact of monetary policy on the homoscedastic and heteroscedastic components of macroeconomic variables.

Suggested Citation

  • Joshua Chan & Arnaud Doucet & Roberto Leon-Gonzalez & Rodney W. Strachan, 2018. "Multivariate Stochastic Volatility with Co-Heteroscedasticity," GRIPS Discussion Papers 18-12, National Graduate Institute for Policy Studies.
  • Handle: RePEc:ngi:dpaper:18-12
    as

    Download full text from publisher

    File URL: https://grips.repo.nii.ac.jp/?action=repository_action_common_download&item_id=1649&item_no=1&attribute_id=20&file_no=1
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Koop, Gary & Leon-Gonzalez, Roberto & Strachan, Rodney W., 2011. "Bayesian inference in a time varying cointegration model," Journal of Econometrics, Elsevier, vol. 165(2), pages 210-220.
    2. Chiu, Ching-Wai (Jeremy) & Mumtaz, Haroon & Pintér, Gábor, 2017. "Forecasting with VAR models: Fat tails and stochastic volatility," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1124-1143.
    3. Joshua Chan & Roberto Leon-Gonzalez & Rodney W. Strachan, 2018. "Invariant Inference and Efficient Computation in the Static Factor Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 819-828, April.
    4. Jones, Galin L. & Haran, Murali & Caffo, Brian S. & Neath, Ronald, 2006. "Fixed-Width Output Analysis for Markov Chain Monte Carlo," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1537-1547, December.
    5. Michael K. Pitt & Neil Shephard, 1999. "Analytic Convergence Rates and Parameterization Issues for the Gibbs Sampler Applied to State Space Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(1), pages 63-85, January.
    6. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    7. Roberto Casarin & Domenico Sartore, 2007. "Matrix-State Particle Filter for Wishart Stochastic Volatility Processes," Working Papers 2007_30, Department of Economics, University of Venice "Ca' Foscari".
    8. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    9. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
    10. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    11. K. Triantafyllopoulos, 2012. "Multi‐variate stochastic volatility modelling using Wishart autoregressive processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(1), pages 48-60, January.
    12. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Large Vector Autoregressions with Asymmetric Priors," Working Papers 759, Queen Mary University of London, School of Economics and Finance.
    13. Gourieroux, C. & Jasiak, J. & Sufana, R., 2009. "The Wishart Autoregressive process of multivariate stochastic volatility," Journal of Econometrics, Elsevier, vol. 150(2), pages 167-181, June.
    14. Chib S. & Jeliazkov I., 2001. "Marginal Likelihood From the Metropolis-Hastings Output," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 270-281, March.
    15. repec:ulb:ulbeco:2013/13388 is not listed on IDEAS
    16. Sims, Christopher A & Zha, Tao, 1998. "Bayesian Methods for Dynamic Multivariate Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 949-968, November.
    17. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    18. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    19. Pieralberto Guarniero & Adam M. Johansen & Anthony Lee, 2017. "The Iterated Auxiliary Particle Filter," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1636-1647, October.
    20. Chan, Joshua C.C., 2013. "Moving average stochastic volatility models with application to inflation forecast," Journal of Econometrics, Elsevier, vol. 176(2), pages 162-172.
    21. Arjun K. Gupta & Daya K. Nagar, 2000. "Matrix-variate beta distribution," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 24, pages 1-11, January.
    22. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Large Vector Autoregressions with Asymmetric Priors," Working Papers 759, Queen Mary University of London, School of Economics and Finance.
    23. Hao Wang & Mike West, 2009. "Bayesian analysis of matrix normal graphical models," Biometrika, Biometrika Trust, vol. 96(4), pages 821-834.
    24. Zha, Tao, 1999. "Block recursion and structural vector autoregressions," Journal of Econometrics, Elsevier, vol. 90(2), pages 291-316, June.
    25. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    26. Asai, Manabu & McAleer, Michael, 2009. "The structure of dynamic correlations in multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 150(2), pages 182-192, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joshua C. C. Chan & Gary Koop & Xuewen Yu, 2024. "Large Order-Invariant Bayesian VARs with Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(2), pages 825-837, April.
    2. Sergey Sinelnikov-Murylev & Alexandr Radygin (ed.), 2018. "Russian Economy in 2017. Trends and Outlooks. In Russian," Books, Gaidar Institute for Economic Policy, edition 1, volume 39, number re39-2017-ru.
    3. Cross, Jamie L. & Hou, Chenghan & Koop, Gary & Poon, Aubrey, 2023. "Large stochastic volatility in mean VARs," Journal of Econometrics, Elsevier, vol. 236(1).
    4. Arias, Jonas E. & Rubio-Ramírez, Juan F. & Shin, Minchul, 2023. "Macroeconomic forecasting and variable ordering in multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1054-1086.
    5. Roberto Leon-Gonzalez & Blessings Majoni, 2023. "Exact Likelihood for Inverse Gamma Stochastic Volatility Models," Working Paper series 23-11, Rimini Centre for Economic Analysis.
    6. Joshua Chan, 2023. "BVARs and Stochastic Volatility," Papers 2310.14438, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joshua Chan, 2023. "BVARs and Stochastic Volatility," Papers 2310.14438, arXiv.org.
    2. Roberto León-González, 2019. "Efficient Bayesian inference in generalized inverse gamma processes for stochastic volatility," Econometric Reviews, Taylor & Francis Journals, vol. 38(8), pages 899-920, September.
    3. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
    4. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    5. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    6. Joshua C.C. Chan & Rodney W. Strachan, 2023. "Bayesian State Space Models In Macroeconometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 58-75, February.
    7. Huber, Florian & Zörner, Thomas O., 2019. "Threshold cointegration in international exchange rates:A Bayesian approach," International Journal of Forecasting, Elsevier, vol. 35(2), pages 458-473.
    8. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    9. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian Vector Autoregressions," The Warwick Economics Research Paper Series (TWERPS) 1159, University of Warwick, Department of Economics.
    10. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Large Vector Autoregressions with Asymmetric Priors," Working Papers 759, Queen Mary University of London, School of Economics and Finance.
    11. Gregor Kastner & Florian Huber, 2020. "Sparse Bayesian vector autoregressions in huge dimensions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1142-1165, November.
    12. Joshua C. C. Chan, 2022. "Asymmetric conjugate priors for large Bayesian VARs," Quantitative Economics, Econometric Society, vol. 13(3), pages 1145-1169, July.
    13. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    14. Leopoldo Catania & Nima Nonejad, 2016. "Density Forecasts and the Leverage Effect: Some Evidence from Observation and Parameter-Driven Volatility Models," Papers 1605.00230, arXiv.org, revised Nov 2016.
    15. Chiu, Ching-Wai (Jeremy) & Mumtaz, Haroon & Pintér, Gábor, 2017. "Forecasting with VAR models: Fat tails and stochastic volatility," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1124-1143.
    16. repec:hal:spmain:info:hdl:2441/27od5pb99881folvtfs8s3k16l is not listed on IDEAS
    17. repec:spo:wpmain:info:hdl:2441/27od5pb99881folvtfs8s3k16l is not listed on IDEAS
    18. Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
    19. Joshua C. C. Chan, 2020. "Large Bayesian VARs: A Flexible Kronecker Error Covariance Structure," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(1), pages 68-79, January.
    20. Anna Pajor & Justyna Wróblewska & Łukasz Kwiatkowski & Jacek Osiewalski, 2024. "Hybrid SV‐GARCH, t‐GARCH and Markov‐switching covariance structures in VEC models—Which is better from a predictive perspective?," International Statistical Review, International Statistical Institute, vol. 92(1), pages 62-86, April.
    21. Ioannis Papageorgiou & Ioannis Kontoyiannis, 2023. "The Bayesian Context Trees State Space Model for time series modelling and forecasting," Papers 2308.00913, arXiv.org, revised Oct 2023.
    22. Andrea Carriero & Francesco Corsello & Massimiliano Marcellino, 2022. "The global component of inflation volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 700-721, June.

    More about this item

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ngi:dpaper:18-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/gripsjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.