Time-varying tail behavior for realized kernels
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Drew Creal & Bernd Schwaab & Siem Jan Koopman & Andr� Lucas, 2014.
"Observation-Driven Mixed-Measurement Dynamic Factor Models with an Application to Credit Risk,"
The Review of Economics and Statistics, MIT Press, vol. 96(5), pages 898-915, December.
- Drew Creal & Bernd Schwaab & Siem Jan Koopman & Andre Lucas, 2011. "Observation Driven Mixed-Measurement Dynamic Factor Models with an Application to Credit Risk," Tinbergen Institute Discussion Papers 11-042/2/DSF16, Tinbergen Institute.
- Schwaab, Bernd & Koopman, Siem Jan & Lucas, André & Creal, Drew, 2013. "Observation driven mixed-measurement dynamic factor models with an application to credit risk," Working Paper Series 1626, European Central Bank.
- Fulvio Corsi & Stefan Mittnik & Christian Pigorsch & Uta Pigorsch, 2008.
"The Volatility of Realized Volatility,"
Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 46-78.
- Corsi, Fulvio & Kretschmer, Uta & Mittnik, Stefan & Pigorsch, Christian, 2005. "The volatility of realized volatility," CFS Working Paper Series 2005/33, Center for Financial Studies (CFS).
- Dong Hwan Oh & Andrew J. Patton, 2018.
"Time-Varying Systemic Risk: Evidence From a Dynamic Copula Model of CDS Spreads,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(2), pages 181-195, April.
- Dong Hwan Oh & Andrew J. Patton, 2013. "Time-Varying Systemic Risk: Evidence from a Dynamic Copula Model of CDS Spreads," Working Papers 13-30, Duke University, Department of Economics.
- Harvey,Andrew C., 2013.
"Dynamic Models for Volatility and Heavy Tails,"
Cambridge Books,
Cambridge University Press, number 9781107630024.
- Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107034723, September.
- Brownlees, C.T. & Gallo, G.M., 2006.
"Financial econometric analysis at ultra-high frequency: Data handling concerns,"
Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2232-2245, December.
- Christian T. Brownlees & Giampiero Gallo, 2006. "Financial Econometric Analysis at Ultra–High Frequency: Data Handling Concerns," Econometrics Working Papers Archive wp2006_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
- Andrew Harvey & Alessandra Luati, 2014.
"Filtering With Heavy Tails,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1112-1122, September.
- Harvey, A. & Luati, A., 2012. "Filtering with heavy tails," Cambridge Working Papers in Economics 1255, Faculty of Economics, University of Cambridge.
- André Lucas & Bernd Schwaab & Xin Zhang, 2014.
"Conditional Euro Area Sovereign Default Risk,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 271-284, April.
- Lucas, André & Schwaab, Bernd & Zhang, Xin, 2013. "Conditional euro area sovereign default risk," Working Paper Series 269, Sveriges Riksbank (Central Bank of Sweden).
- Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008.
"Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise,"
Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
- Ole E Barndorff-Nielsen & Peter Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," OFRC Working Papers Series 2006fe05, Oxford Financial Research Centre.
- Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," Economics Papers 2006-W03, Economics Group, Nuffield College, University of Oxford.
- Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
- Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
- Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
- Amisano, Gianni & Giacomini, Raffaella, 2007.
"Comparing Density Forecasts via Weighted Likelihood Ratio Tests,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 177-190, April.
- Gianni Amisano & Raffaella Giacomini, 2005. "Comparing Density Forecsts via Weighted Likelihood Ratio Tests," Working Papers ubs0504, University of Brescia, Department of Economics.
- James Mitchell & Stephen G. Hall, 2005. "Evaluating, Comparing and Combining Density Forecasts Using the KLIC with an Application to the Bank of England and NIESR ‘Fan’ Charts of Inflation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 995-1033, December.
- Lucas, André & Zhang, Xin, 2016.
"Score-driven exponentially weighted moving averages and Value-at-Risk forecasting,"
International Journal of Forecasting, Elsevier, vol. 32(2), pages 293-302.
- André Lucas & Xin Zhang, 2014. "Score Driven exponentially Weighted Moving Average and Value-at-Risk Forecasting," Tinbergen Institute Discussion Papers 14-092/IV/DSF77, Tinbergen Institute, revised 09 Sep 2015.
- Lucas, André & Zhang, Xin, 2015. "Score Driven Exponentially Weighted Moving Averages and Value-at-Risk Forecasting," Working Paper Series 309, Sveriges Riksbank (Central Bank of Sweden).
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003.
"Modeling and Forecasting Realized Volatility,"
Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," Center for Financial Institutions Working Papers 01-01, Wharton School Center for Financial Institutions, University of Pennsylvania.
- Anderson, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Labys, Paul, 2002. "Modeling and Forecasting Realized Volatility," Working Papers 02-12, Duke University, Department of Economics.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," NBER Working Papers 8160, National Bureau of Economic Research, Inc.
- Engle, Robert F. & Gallo, Giampiero M., 2006.
"A multiple indicators model for volatility using intra-daily data,"
Journal of Econometrics, Elsevier, vol. 131(1-2), pages 3-27.
- Robert F. Engle & Giampiero M. Gallo, 2003. "A Multiple Indicators Model For Volatility Using Intra-Daily Data," Econometrics Working Papers Archive wp2003_07, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
- Robert F. Engle & Giampiero M. Gallo, 2003. "A Multiple Indicators Model for Volatility Using Intra-Daily Data," NBER Working Papers 10117, National Bureau of Economic Research, Inc.
- Massimiliano Caporin & Eduardo Rossi & Paolo Santucci De Magistris, 2014.
"Chasing Volatility. A Persistent Multiplicative Error Model With Jumps,"
"Marco Fanno" Working Papers
0186, Dipartimento di Scienze Economiche "Marco Fanno".
- Massimiliano Caporin & Eduardo Rossi & Paolo Santucci de Magistris, 2014. "Chasing volatility - A persistent multiplicative error model with jumps," CREATES Research Papers 2014-29, Department of Economics and Business Economics, Aarhus University.
- O. E. Barndorff-Nielsen & P. Reinhard Hansen & A. Lunde & N. Shephard, 2009. "Realized kernels in practice: trades and quotes," Econometrics Journal, Royal Economic Society, vol. 12(3), pages 1-32, November.
- Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2012.
"Multivariate high‐frequency‐based volatility (HEAVY) models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 907-933, September.
- Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2011. "Multivariate High-Frequency-Based Volatility (HEAVY) Models," Economics Papers 2011-W01, Economics Group, Nuffield College, University of Oxford.
- Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2011. "Multivariate High-Frequency-Based Volatility (HEAVY) Models," Economics Series Working Papers 533, University of Oxford, Department of Economics.
- Golosnoy, Vasyl & Gribisch, Bastian & Liesenfeld, Roman, 2012.
"The conditional autoregressive Wishart model for multivariate stock market volatility,"
Journal of Econometrics, Elsevier, vol. 167(1), pages 211-223.
- Golosnoy, Vasyl & Gribisch, Bastian & Liesenfeld, Roman, 2010. "The conditional autoregressive wishart model for multivariate stock market volatility," Economics Working Papers 2010-07, Christian-Albrechts-University of Kiel, Department of Economics.
- Dr. James Mitchell, 2005. "Evaluating, comparing and combining density forecasts using the KLIC with an application to the Bank of England and NIESR ÔfanÕ charts of inflation," National Institute of Economic and Social Research (NIESR) Discussion Papers 253, National Institute of Economic and Social Research.
- Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
- F. Blasques & S. J. Koopman & A. Lucas, 2015. "Information-theoretic optimality of observation-driven time series models for continuous responses," Biometrika, Biometrika Trust, vol. 102(2), pages 325-343.
- Neil Shephard & Kevin Sheppard, 2010.
"Realising the future: forecasting with high-frequency-based volatility (HEAVY) models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 197-231.
- Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," OFRC Working Papers Series 2009fe02, Oxford Financial Research Centre.
- Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," Economics Series Working Papers 438, University of Oxford, Department of Economics.
- Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," Economics Papers 2009-W03, Economics Group, Nuffield College, University of Oxford.
- Richard Gerlach & Zudi Lu & Hai Huang, 2013. "Exponentially Smoothing the Skewed Laplace Distribution for Value‐at‐Risk Forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 534-550, September.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Dr. James Mitchell, 2005. "Evaluating, comparing and combining density forecasts using the KLIC with an application to the Bank of England and NIESR ÔfanÕ charts of inflation," National Institute of Economic and Social Research (NIESR) Discussion Papers 253, National Institute of Economic and Social Research.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Opschoor, Anne & Lucas, André, 2023. "Time-varying variance and skewness in realized volatility measures," International Journal of Forecasting, Elsevier, vol. 39(2), pages 827-840.
- Anne Opschoor & André Lucas, 2019. "Observation-driven Models for Realized Variances and Overnight Returns," Tinbergen Institute Discussion Papers 19-052/IV, Tinbergen Institute.
- Opschoor, Anne & Lucas, André, 2021. "Observation-driven models for realized variances and overnight returns applied to Value-at-Risk and Expected Shortfall forecasting," International Journal of Forecasting, Elsevier, vol. 37(2), pages 622-633.
- Andre Lucas & Anne Opschoor, 2016. "Fractional Integration and Fat Tails for Realized Covariance Kernels and Returns," Tinbergen Institute Discussion Papers 16-069/IV, Tinbergen Institute, revised 07 Jul 2017.
- Pawel Janus & André Lucas & Anne Opschoor & Dick J.C. van Dijk, 2014. "New HEAVY Models for Fat-Tailed Returns and Realized Covariance Kernels," Tinbergen Institute Discussion Papers 14-073/IV, Tinbergen Institute, revised 19 Aug 2015.
- Andre Lucas & Anne Opschoor & Luca Rossini, 2021. "Tail Heterogeneity for Dynamic Covariance Matrices: the F-Riesz Distribution," Tinbergen Institute Discussion Papers 21-010/III, Tinbergen Institute, revised 11 Jul 2023.
- Catania, Leopoldo & Proietti, Tommaso, 2020.
"Forecasting volatility with time-varying leverage and volatility of volatility effects,"
International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
- Leopoldo Catania & Tommaso Proietti, 2019. "Forecasting Volatility with Time-Varying Leverage and Volatility of Volatility Effects," CEIS Research Paper 450, Tor Vergata University, CEIS, revised 06 Feb 2019.
- Vassallo, Danilo & Buccheri, Giuseppe & Corsi, Fulvio, 2021. "A DCC-type approach for realized covariance modeling with score-driven dynamics," International Journal of Forecasting, Elsevier, vol. 37(2), pages 569-586.
- Anne Opschoor & André Lucas & István Barra & Dick van Dijk, 2021.
"Closed-Form Multi-Factor Copula Models With Observation-Driven Dynamic Factor Loadings,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(4), pages 1066-1079, October.
- Anne Opschoor & André Lucas & Istvan Barra & Dick van Dijk, 2019. "Closed-Form Multi-Factor Copula Models with Observation-Driven Dynamic Factor Loadings," Tinbergen Institute Discussion Papers 19-013/IV, Tinbergen Institute, revised 23 Oct 2019.
- Anne Opschoor & Dick van Dijk & Michel van der Wel, 2014. "Improving Density Forecasts and Value-at-Risk Estimates by Combining Densities," Tinbergen Institute Discussion Papers 14-090/III, Tinbergen Institute.
- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013.
"Financial Risk Measurement for Financial Risk Management,"
Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220,
Elsevier.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," PIER Working Paper Archive 11-037, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2012. "Financial Risk Measurement for Financial Risk Management," NBER Working Papers 18084, National Bureau of Economic Research, Inc.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," CREATES Research Papers 2011-37, Department of Economics and Business Economics, Aarhus University.
- Elena Ivona Dumitrescu & Georgiana-Denisa Banulescu, 2019.
"Do High-frequency-based Measures Improve Conditional Covariance Forecasts?,"
Post-Print
hal-03331122, HAL.
- Denisa BANULESCU-RADU & Elena Ivona DUMITRESCU, 2019. "Do High-frequency-based Measures Improve Conditional Covariance Forecasts?," LEO Working Papers / DR LEO 2709, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
- Fengler, Matthias R. & Okhrin, Ostap, 2016. "Managing risk with a realized copula parameter," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 131-152.
- Li, Zhao-Chen & Xie, Chi & Zeng, Zhi-Jian & Wang, Gang-Jin & Zhang, Ting, 2023. "Forecasting global stock market volatilities in an uncertain world," International Review of Financial Analysis, Elsevier, vol. 85(C).
- Xu, Yongdeng, 2022. "The Exponential HEAVY Model: An Improved Approach to Volatility Modeling and Forecasting," Cardiff Economics Working Papers E2022/5, Cardiff University, Cardiff Business School, Economics Section.
- Mauro Bernardi & Leopoldo Catania, 2015. "Switching-GAS Copula Models With Application to Systemic Risk," Papers 1504.03733, arXiv.org, revised Jan 2016.
- Harvey, Andrew & Palumbo, Dario, 2023.
"Score-driven models for realized volatility,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Harvey, A. & Palumbo, D., 2019. "Score-Driven Models for Realized Volatility," Cambridge Working Papers in Economics 1950, Faculty of Economics, University of Cambridge.
- Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2012.
"Multivariate high‐frequency‐based volatility (HEAVY) models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 907-933, September.
- Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2011. "Multivariate High-Frequency-Based Volatility (HEAVY) Models," Economics Series Working Papers 533, University of Oxford, Department of Economics.
- Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2011. "Multivariate High-Frequency-Based Volatility (HEAVY) Models," Economics Papers 2011-W01, Economics Group, Nuffield College, University of Oxford.
- Lucas, André & Zhang, Xin, 2016.
"Score-driven exponentially weighted moving averages and Value-at-Risk forecasting,"
International Journal of Forecasting, Elsevier, vol. 32(2), pages 293-302.
- André Lucas & Xin Zhang, 2014. "Score Driven exponentially Weighted Moving Average and Value-at-Risk Forecasting," Tinbergen Institute Discussion Papers 14-092/IV/DSF77, Tinbergen Institute, revised 09 Sep 2015.
- Lucas, André & Zhang, Xin, 2015. "Score Driven Exponentially Weighted Moving Averages and Value-at-Risk Forecasting," Working Paper Series 309, Sveriges Riksbank (Central Bank of Sweden).
- Tian, Fengping & Yang, Ke & Chen, Langnan, 2017. "Realized volatility forecasting of agricultural commodity futures using the HAR model with time-varying sparsity," International Journal of Forecasting, Elsevier, vol. 33(1), pages 132-152.
More about this item
Keywords
realized kernel; heavy tails; F distribution; time-varying shape-parameter; Vol-of-Vol; score-driven dynamics;All these keywords.
JEL classification:
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2019-08-12 (Econometrics)
- NEP-ETS-2019-08-12 (Econometric Time Series)
- NEP-RMG-2019-08-12 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20190051. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.