IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2011.06909.html
   My bibliography  Save this paper

Dynamic factor, leverage and realized covariances in multivariate stochastic volatility

Author

Listed:
  • Yuta Yamauchi
  • Yasuhiro Omori

Abstract

In the stochastic volatility models for multivariate daily stock returns, it has been found that the estimates of parameters become unstable as the dimension of returns increases. To solve this problem, we focus on the factor structure of multiple returns and consider two additional sources of information: first, the realized stock index associated with the market factor, and second, the realized covariance matrix calculated from high frequency data. The proposed dynamic factor model with the leverage effect and realized measures is applied to ten of the top stocks composing the exchange traded fund linked with the investment return of the SP500 index and the model is shown to have a stable advantage in portfolio performance.

Suggested Citation

  • Yuta Yamauchi & Yasuhiro Omori, 2020. "Dynamic factor, leverage and realized covariances in multivariate stochastic volatility," Papers 2011.06909, arXiv.org, revised Sep 2021.
  • Handle: RePEc:arx:papers:2011.06909
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2011.06909
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    2. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
    3. Yu, Jun, 2005. "On leverage in a stochastic volatility model," Journal of Econometrics, Elsevier, vol. 127(2), pages 165-178, August.
    4. Takahashi, Makoto & Omori, Yasuhiro & Watanabe, Toshiaki, 2009. "Estimating stochastic volatility models using daily returns and realized volatility simultaneously," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2404-2426, April.
    5. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2006. "Analysis of high dimensional multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 134(2), pages 341-371, October.
    6. Aguilar, Omar & West, Mike, 2000. "Bayesian Dynamic Factor Models and Portfolio Allocation," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 338-357, July.
    7. Peter Reinhard Hansen & Zhuo Huang & Howard Howan Shek, 2012. "Realized GARCH: a joint model for returns and realized measures of volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 877-906, September.
    8. Shirota, Shinichiro & Omori, Yasuhiro & F. Lopes, Hedibert. & Piao, Haixiang, 2017. "Cholesky realized stochastic volatility model," Econometrics and Statistics, Elsevier, vol. 3(C), pages 34-59.
    9. Yufeng Han, 2006. "Asset Allocation with a High Dimensional Latent Factor Stochastic Volatility Model," The Review of Financial Studies, Society for Financial Studies, vol. 19(1), pages 237-271.
    10. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.
    11. Tsunehiro Ishihara & Yasuhiro Omori, 2017. "Portfolio optimization using dynamic factor and stochastic volatility: evidence on Fat-tailed errors and leverage," The Japanese Economic Review, Springer, vol. 68(1), pages 63-94, March.
    12. Yuta yamauchi & Yasuhiro Omori, 2019. "Multivariate Stochastic Volatility Model with Realized Volatilities and Pairwise Realized Correlations," CIRJE F-Series CIRJE-F-1117, CIRJE, Faculty of Economics, University of Tokyo.
    13. Omori, Yasuhiro & Watanabe, Toshiaki, 2008. "Block sampler and posterior mode estimation for asymmetric stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2892-2910, February.
    14. Yuta Yamauchi & Yasuhiro Omori, 2018. "Multivariate Stochastic Volatility Model with Realized Volatilities and Pairwise Realized Correlations," Papers 1809.09928, arXiv.org, revised Mar 2019.
    15. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
    16. Tsunehiro Ishihara & Yasuhiro Omori, 2017. "Portfolio optimization using dynamic factor and stochastic volatility: evidence on Fat-tailed errors and leverage," The Japanese Economic Review, Japanese Economic Association, vol. 68(1), pages 63-94, March.
    17. Toshiaki Watanabe, 2004. "A multi-move sampler for estimating non-Gaussian time series models: Comments on Shephard & Pitt (1997)," Biometrika, Biometrika Trust, vol. 91(1), pages 246-248, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuta Yamauchi & Yasuhiro Omori, 2021. "Dynamic Factor, Leverage and Realized Covariances in Multivariate Stochastic Volatility," CIRJE F-Series CIRJE-F-1176, CIRJE, Faculty of Economics, University of Tokyo.
    2. Yuta Yamauchi & Yasuhiro Omori, 2020. "Dynamic Factor, Leverage and Realized Covariances in Multivariate Stochastic Volatility," CIRJE F-Series CIRJE-F-1158, CIRJE, Faculty of Economics, University of Tokyo.
    3. Yuta Kurose & Yasuhiro Omori, 2016. "Multiple-block Dynamic Equicorrelations with Realized Measures, Leverage and Endogeneity," CIRJE F-Series CIRJE-F-1022, CIRJE, Faculty of Economics, University of Tokyo.
    4. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
    5. Tsunehiro Ishihara & Yasuhiro Omori, 2017. "Portfolio optimization using dynamic factor and stochastic volatility: evidence on Fat-tailed errors and leverage," The Japanese Economic Review, Springer, vol. 68(1), pages 63-94, March.
    6. Yuta Yamauchi & Yasuhiro Omori, 2016. "Multivariate Stochastic Volatility Model with Realized Volatilities and Pairwise Realized Correlations ," CIRJE F-Series CIRJE-F-1029, CIRJE, Faculty of Economics, University of Tokyo.
    7. Tsunehiro Ishihara & Yasuhiro Omori, 2017. "Portfolio optimization using dynamic factor and stochastic volatility: evidence on Fat-tailed errors and leverage," The Japanese Economic Review, Japanese Economic Association, vol. 68(1), pages 63-94, March.
    8. Shirota, Shinichiro & Omori, Yasuhiro & F. Lopes, Hedibert. & Piao, Haixiang, 2017. "Cholesky realized stochastic volatility model," Econometrics and Statistics, Elsevier, vol. 3(C), pages 34-59.
    9. Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility (Revised in May 2007, Handbook of Financial Time Series (Published in "Handbook of Financial Time Series" (eds T.G. Andersen, R.A. Davis, Jens-Peter Kreiss," CARF F-Series CARF-F-094, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    10. Yuta yamauchi & Yasuhiro Omori, 2019. "Multivariate Stochastic Volatility Model with Realized Volatilities and Pairwise Realized Correlations," CIRJE F-Series CIRJE-F-1117, CIRJE, Faculty of Economics, University of Tokyo.
    11. Yuta Yamauchi & Yasuhiro Omori, 2018. "Multivariate Stochastic Volatility Model with Realized Volatilities and Pairwise Realized Correlations," Papers 1809.09928, arXiv.org, revised Mar 2019.
    12. Yuta Kurose & Yasuhiro Omori, "undated". "Multiple-lock Dynamic Equicorrelations with Realized Measures, Leverage and Endogeneity," CIRJE F-Series CIRJE-F-1075, CIRJE, Faculty of Economics, University of Tokyo.
    13. Kurose, Yuta & Omori, Yasuhiro, 2020. "Multiple-block dynamic equicorrelations with realized measures, leverage and endogeneity," Econometrics and Statistics, Elsevier, vol. 13(C), pages 46-68.
    14. Kastner, Gregor, 2019. "Sparse Bayesian time-varying covariance estimation in many dimensions," Journal of Econometrics, Elsevier, vol. 210(1), pages 98-115.
    15. Nakajima, Jouchi & Omori, Yasuhiro, 2012. "Stochastic volatility model with leverage and asymmetrically heavy-tailed error using GH skew Student’s t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3690-3704.
    16. Shirota, Shinichiro & Hizu, Takayuki & Omori, Yasuhiro, 2014. "Realized stochastic volatility with leverage and long memory," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 618-641.
    17. Watanabe, Toshiaki & Nakajima, Jouchi, 2023. "High-frequency realized stochastic volatility model," Discussion paper series HIAS-E-127, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
    18. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2021. "Forecasting Daily Volatility of Stock Price Index Using Daily Returns and Realized Volatility," Discussion paper series HIAS-E-104, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
    19. Trojan, Sebastian, 2013. "Regime Switching Stochastic Volatility with Skew, Fat Tails and Leverage using Returns and Realized Volatility Contemporaneously," Economics Working Paper Series 1341, University of St. Gallen, School of Economics and Political Science, revised Aug 2014.
    20. Jouchi Nakajima & Yasuhiro Omori, 2010. "Stochastic Volatility Model with Leverage and Asymmetrically Heavy-Tailed Error Using GH Skew Student's t-Distribution Models," CIRJE F-Series CIRJE-F-738, CIRJE, Faculty of Economics, University of Tokyo.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2011.06909. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.