IDEAS home Printed from https://ideas.repec.org/a/bla/acctfi/v46y2006i2p309-326.html
   My bibliography  Save this article

Bayesian comparison of several continuous time models of the Australian short rate

Author

Listed:
  • Andrew D. Sanford
  • Gael M. Martin

Abstract

This paper provides an empirical analysis of a range of alternative single‐factor continuous time models for the Australian short‐term interest rate. The models are nested in a general single‐factor diffusion process for the short rate, with each alternative model indexed by the level effect parameter for the volatility. The inferential approach adopted is Bayesian, with estimation of the models proceeding through a Markov chain Monte Carlo simulation scheme. Discrimination between the alternative models is based on Bayes factors. A data augmentation approach is used to improve the accuracy of the discrete time approximation of the continuous time models. An empirical investigation is conducted using weekly observations on the Australian 90 day interest rate from January 1990 to July 2000. The Bayes factors indicate that the square root diffusion model has the highest posterior probability of all models considered.

Suggested Citation

  • Andrew D. Sanford & Gael M. Martin, 2006. "Bayesian comparison of several continuous time models of the Australian short rate," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 46(2), pages 309-326, June.
  • Handle: RePEc:bla:acctfi:v:46:y:2006:i:2:p:309-326
    DOI: 10.1111/j.1467-629X.2006.00169.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-629X.2006.00169.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-629X.2006.00169.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qiang Dai & Kenneth J. Singleton, 2000. "Specification Analysis of Affine Term Structure Models," Journal of Finance, American Finance Association, vol. 55(5), pages 1943-1978, October.
    2. Dahlquist, Magnus, 1996. "On alternative interest rate processes," Journal of Banking & Finance, Elsevier, vol. 20(6), pages 1093-1119, July.
    3. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    4. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    5. Sanford, Andrew D. & Martin, Gael M., 2005. "Simulation-based Bayesian estimation of an affine term structure model," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 527-554, April.
    6. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    7. Chen, Ren-Raw & Scott, Louis O, 1992. "Pricing Interest Rate Options in a Two-Factor Cox-Ingersoll-Ross Model of the Term Structure," The Review of Financial Studies, Society for Financial Studies, vol. 5(4), pages 613-636.
    8. Tse, Y. K., 1995. "Some international evidence on the stochastic behavior of interest rates," Journal of International Money and Finance, Elsevier, vol. 14(5), pages 721-738, October.
    9. Schotman, Peter & van Dijk, Herman K., 1991. "A Bayesian analysis of the unit root in real exchange rates," Journal of Econometrics, Elsevier, vol. 49(1-2), pages 195-238.
    10. Eraker, Bjorn, 2001. "MCMC Analysis of Diffusion Models with Application to Finance," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(2), pages 177-191, April.
    11. Conley, Timothy G, et al, 1997. "Short-Term Interest Rates as Subordinated Diffusions," The Review of Financial Studies, Society for Financial Studies, vol. 10(3), pages 525-577.
    12. Andersen, Torben G. & Lund, Jesper, 1997. "Estimating continuous-time stochastic volatility models of the short-term interest rate," Journal of Econometrics, Elsevier, vol. 77(2), pages 343-377, April.
    13. Brenner, Robin J. & Harjes, Richard H. & Kroner, Kenneth F., 1996. "Another Look at Models of the Short-Term Interest Rate," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 31(1), pages 85-107, March.
    14. Sirimon Treepongkaruna & Stephen Gray, 2003. "On the robustness of short–term interest rate models," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 43(1), pages 87-121, March.
    15. Elerain, Ola & Chib, Siddhartha & Shephard, Neil, 2001. "Likelihood Inference for Discretely Observed Nonlinear Diffusions," Econometrica, Econometric Society, vol. 69(4), pages 959-993, July.
    16. A. S. Hurn & K. A. Lindsay & V. L. Martin, 2003. "On the efficacy of simulated maximum likelihood for estimating the parameters of stochastic differential Equations," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(1), pages 45-63, January.
    17. Courtadon, Georges, 1982. "The Pricing of Options on Default-Free Bonds," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 17(1), pages 75-100, March.
    18. Sirimon Treepongkaruna & Stephen Gray, 2003. "Short‐term interest rate models: valuing interest rate derivatives using a Monte‐Carlo approach," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 43(2), pages 231-259, July.
    19. Christopher S. Jones, 2003. "Nonlinear Mean Reversion in the Short-Term Interest Rate," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 793-843, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chew Lian Chua & Sandy Suardi & Sarantis Tsiaplias, 2011. "Predicting Short-Term Interest Rates: Does Bayesian Model Averaging Provide Forecast Improvement?," Melbourne Institute Working Paper Series wp2011n01, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
    2. Zhang, Yonghui & Chen, Zhongtian & Li, Yong, 2017. "Bayesian testing for short term interest rate models," Finance Research Letters, Elsevier, vol. 20(C), pages 146-152.
    3. Shyh-Wei Chen & Chung-Hua Shen, 2007. "Evidence of the duration-dependence from the stock markets in the Pacific Rim economies," Applied Economics, Taylor & Francis Journals, vol. 39(11), pages 1461-1474.
    4. Vijay A. Murik, 2013. "Bond pricing with a surface of zero coupon yields," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 53(2), pages 497-512, June.
    5. Muteba Mwamba, John & Thabo, Lethaba & Uwilingiye, Josine, 2014. "Modelling the short-term interest rate with stochastic differential equation in continuous time: linear and nonlinear models," MPRA Paper 64386, University Library of Munich, Germany.
    6. Tunaru, Diana, 2017. "Gaussian estimation and forecasting of the U.K. yield curve with multi-factor continuous-time models," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 119-129.
    7. Chua, Chew Lian & Suardi, Sandy & Tsiaplias, Sarantis, 2013. "Predicting short-term interest rates using Bayesian model averaging: Evidence from weekly and high frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 442-455.
    8. Vijay A Murik, 2013. "Measuring monetary policy expectations," Australian Journal of Management, Australian School of Business, vol. 38(1), pages 49-65, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew D. Sanford & Gael Martin, 2004. "Bayesian Analysis of Continuous Time Models of the Australian Short Rate," Monash Econometrics and Business Statistics Working Papers 11/04, Monash University, Department of Econometrics and Business Statistics.
    2. Chua, Chew Lian & Suardi, Sandy & Tsiaplias, Sarantis, 2013. "Predicting short-term interest rates using Bayesian model averaging: Evidence from weekly and high frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 442-455.
    3. Dennis Kristensen, 2004. "A Semiparametric Single-Factor Model of the Term Structure," FMG Discussion Papers dp501, Financial Markets Group.
    4. Collin-Dufresne, Pierre & Goldstein, Robert S. & Jones, Christopher S., 2009. "Can interest rate volatility be extracted from the cross section of bond yields?," Journal of Financial Economics, Elsevier, vol. 94(1), pages 47-66, October.
    5. Jun Yu & Peter C. B. Phillips, 2001. "A Gaussian approach for continuous time models of the short-term interest rate," Econometrics Journal, Royal Economic Society, vol. 4(2), pages 1-3.
    6. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    7. Faff, Robert & Gray, Philip, 2006. "On the estimation and comparison of short-rate models using the generalised method of moments," Journal of Banking & Finance, Elsevier, vol. 30(11), pages 3131-3146, November.
    8. Czellar, Veronika & Karolyi, G. Andrew & Ronchetti, Elvezio, 2007. "Indirect robust estimation of the short-term interest rate process," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 546-563, September.
    9. repec:wyi:journl:002109 is not listed on IDEAS
    10. Episcopos, Athanasios, 2000. "Further evidence on alternative continuous time models of the short-term interest rate," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 10(2), pages 199-212, June.
    11. Durham, Garland B., 2003. "Likelihood-based specification analysis of continuous-time models of the short-term interest rate," Journal of Financial Economics, Elsevier, vol. 70(3), pages 463-487, December.
    12. Zongwu Cai & Yongmiao Hong, 2013. "Some Recent Developments in Nonparametric Finance," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    13. repec:wyi:journl:002108 is not listed on IDEAS
    14. Chew Lian Chua & Sandy Suardi & Sarantis Tsiaplias, 2011. "Predicting Short-Term Interest Rates: Does Bayesian Model Averaging Provide Forecast Improvement?," Melbourne Institute Working Paper Series wp2011n01, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
    15. Cai, Lili & Swanson, Norman R., 2011. "In- and out-of-sample specification analysis of spot rate models: Further evidence for the period 1982-2008," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 743-764, September.
    16. Hong, Yongmiao & Lin, Hai & Wang, Shouyang, 2010. "Modeling the dynamics of Chinese spot interest rates," Journal of Banking & Finance, Elsevier, vol. 34(5), pages 1047-1061, May.
    17. Diether Beuermann & Antonios Antoniou & Alejandro Bernales, 2005. "The Dynamics of the Short-Term Interest Rate in the UK," Finance 0512029, University Library of Munich, Germany.
    18. Griffin, J.E. & Steel, M.F.J., 2006. "Inference with non-Gaussian Ornstein-Uhlenbeck processes for stochastic volatility," Journal of Econometrics, Elsevier, vol. 134(2), pages 605-644, October.
    19. Duan, Jin-Chuan & Jacobs, Kris, 2008. "Is long memory necessary? An empirical investigation of nonnegative interest rate processes," Journal of Empirical Finance, Elsevier, vol. 15(3), pages 567-581, June.
    20. repec:wyi:journl:002118 is not listed on IDEAS
    21. Des Mc Manus & David Watt, 1999. "Estimating One-Factor Models of Short-Term Interest Rates," Staff Working Papers 99-18, Bank of Canada.
    22. Hong, Yongmiao & Lin, Hai & Wang, Shouyang, 2010. "Modeling the dynamics of Chinese spot interest rates," Journal of Banking & Finance, Elsevier, vol. 34(5), pages 1047-1061, May.
    23. Haitao Li & Yuewu Xu, 2009. "Short Rate Dynamics and Regime Shifts," International Review of Finance, International Review of Finance Ltd., vol. 9(3), pages 211-241, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:acctfi:v:46:y:2006:i:2:p:309-326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/aaanzea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.