IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v54y2013i4p977-991.html
   My bibliography  Save this article

Fractional integration versus level shifts: the case of realized asset correlations

Author

Listed:
  • Philip Bertram
  • Robinson Kruse
  • Philipp Sibbertsen

Abstract

Long memory has been widely documented for realized financial market volatility. As a novelty, we consider daily realized asset correlations and we investigate whether the observed persistence is (i) due to true long memory (i.e. fractional integration) or (ii) artificially generated by some structural break processes. These two phenomena are difficult to be distinguished in practice. Our empirical results strongly indicate that the hyperbolic decay of the autocorrelation functions of pair-wise realized correlation series is indeed not driven by a truly fractionally integrated process. This finding is robust against user specific parameter choices in the applied test statistic and holds for all 15 considered time series. As a next step, we apply simple models with deterministic level shifts. When selecting the number of breaks, estimating the breakpoints and the corresponding structural break models we find a substantial degree of co-movement between the realized correlation series hinting at co-breaking. The estimated structural break models are interpreted in the light of the historic economic and financial development. Copyright Springer-Verlag Berlin Heidelberg 2013

Suggested Citation

  • Philip Bertram & Robinson Kruse & Philipp Sibbertsen, 2013. "Fractional integration versus level shifts: the case of realized asset correlations," Statistical Papers, Springer, vol. 54(4), pages 977-991, November.
  • Handle: RePEc:spr:stpapr:v:54:y:2013:i:4:p:977-991
    DOI: 10.1007/s00362-013-0513-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00362-013-0513-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00362-013-0513-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ploberger, Werner & Kramer, Walter, 1996. "A trend-resistant test for structural change based on OLS residuals," Journal of Econometrics, Elsevier, vol. 70(1), pages 175-185, January.
    2. Walter Kramer & Philipp Sibbertsen, 2002. "Testing for Structural Changes in the Presence of Long Memory," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 1(3), pages 235-242, December.
    3. Chun Yip Yau & Richard A. Davis, 2012. "Likelihood inference for discriminating between long-memory and change-point models," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(4), pages 649-664, July.
    4. Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Econometric Analysis of Realized Covariation: High Frequency Based Covariance, Regression, and Correlation in Financial Economics," Econometrica, Econometric Society, vol. 72(3), pages 885-925, May.
    5. Zeileis, Achim & Kleiber, Christian & Kramer, Walter & Hornik, Kurt, 2003. "Testing and dating of structural changes in practice," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 109-123, October.
    6. Audrino, Francesco & Corsi, Fulvio, 2010. "Modeling tick-by-tick realized correlations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2372-2382, November.
    7. Roxana Chiriac & Valeri Voev, 2011. "Modelling and forecasting multivariate realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 922-947, September.
    8. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    9. Qu, Zhongjun, 2011. "A Test Against Spurious Long Memory," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 423-438.
    10. Morana, Claudio, 2007. "Multivariate modelling of long memory processes with common components," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 919-934, October.
    11. Wied, Dominik & Krämer, Walter & Dehling, Herold, 2012. "Testing For A Change In Correlation At An Unknown Point In Time Using An Extended Functional Delta Method," Econometric Theory, Cambridge University Press, vol. 28(3), pages 570-589, June.
    12. Hendry, David F. & Massmann, Michael, 2007. "Co-Breaking: Recent Advances and a Synopsis of the Literature," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 33-51, January.
    13. Krämer, Walter & Sibbertsen, Philipp & Kleiber, Christian, 2001. "Long memory vs. structural change in financial time series," Technical Reports 2001,37, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    14. Ohanissian, Arek & Russell, Jeffrey R. & Tsay, Ruey S., 2008. "True or Spurious Long Memory? A New Test," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 161-175, April.
    15. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    16. Kramer, Walter & Ploberger, Werner & Alt, Raimund, 1988. "Testing for Structural Change in Dynamic Models," Econometrica, Econometric Society, vol. 56(6), pages 1355-1369, November.
    17. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    18. Ploberger, Werner & Kramer, Walter, 1992. "The CUSUM Test with OLS Residuals," Econometrica, Econometric Society, vol. 60(2), pages 271-285, March.
    19. Shimotsu, Katsumi, 2007. "Gaussian semiparametric estimation of multivariate fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 137(2), pages 277-310, April.
    20. Davidson, James & Sibbertsen, Philipp, 2009. "Tests of bias in log-periodogram regression," Economics Letters, Elsevier, vol. 102(2), pages 83-86, February.
    21. Dominique Guegan, 2005. "How can we Define the Concept of Long Memory? An Econometric Survey," Econometric Reviews, Taylor & Francis Journals, vol. 24(2), pages 113-149.
    22. Dominique Guegan, 2004. "How Can We Define the Long Memory Concept? An Econometric Survey," Econometric Society 2004 Australasian Meetings 361, Econometric Society.
    23. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    24. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lihong Wang, 2020. "Lack of fit test for long memory regression models," Statistical Papers, Springer, vol. 61(3), pages 1043-1067, June.
    2. Becker, Janis & Leschinski, Christian & Sibbertsen, Philipp, 2019. "Robust Multivariate Local Whittle Estimation and Spurious Fractional Cointegration," Hannover Economic Papers (HEP) dp-660, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    3. Lihong Wang, 2020. "Nearest neighbors estimation for long memory functional data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(4), pages 709-725, December.
    4. Dennis Alvaro & Ángel Guillén & Gabriel Rodríguez, 2017. "Modelling the volatility of commodities prices using a stochastic volatility model with random level shifts," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 153(1), pages 71-103, February.
    5. Audrino, Francesco & Camponovo, Lorenzo & Roth, Constantin, 2015. "Testing the lag structure of assets’ realized volatility dynamics," Economics Working Paper Series 1501, University of St. Gallen, School of Economics and Political Science.
    6. Jan Beran & Yuanhua Feng & Sucharita Ghosh, 2015. "Modelling long-range dependence and trends in duration series: an approach based on EFARIMA and ESEMIFAR models," Statistical Papers, Springer, vol. 56(2), pages 431-451, May.
    7. Vasyl Golosnoy, 2018. "Sequential monitoring of portfolio betas," Statistical Papers, Springer, vol. 59(2), pages 663-684, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abderrazak Ben Maatoug & Rim Lamouchi & Russell Davidson & Ibrahim Fatnassi, 2018. "Modelling Foreign Exchange Realized Volatility Using High Frequency Data: Long Memory versus Structural Breaks," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(1), pages 1-25, March.
    2. Choi, Kyongwook & Yu, Wei-Choun & Zivot, Eric, 2010. "Long memory versus structural breaks in modeling and forecasting realized volatility," Journal of International Money and Finance, Elsevier, vol. 29(5), pages 857-875, September.
    3. Dark, Jonathan, 2018. "Multivariate models with long memory dependence in conditional correlation and volatility," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 162-180.
    4. Rinke, Saskia & Busch, Marie & Leschinski, Christian, 2017. "Long Memory, Breaks, and Trends: On the Sources of Persistence in Inflation Rates," Hannover Economic Papers (HEP) dp-584, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    5. Sibbertsen, Philipp & Leschinski, Christian & Busch, Marie, 2018. "A multivariate test against spurious long memory," Journal of Econometrics, Elsevier, vol. 203(1), pages 33-49.
    6. Geoffrey Ngene & Ann Nduati Mungai & Allen K. Lynch, 2018. "Long-Term Dependency Structure and Structural Breaks: Evidence from the U.S. Sector Returns and Volatility," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-38, June.
    7. Richard T. Baillie & Fabio Calonaci & Dooyeon Cho & Seunghwa Rho, 2019. "Long Memory, Realized Volatility and HAR Models," Working Papers 881, Queen Mary University of London, School of Economics and Finance.
    8. Paul Johnson & Chris Papageorgiou, 2020. "What Remains of Cross-Country Convergence?," Journal of Economic Literature, American Economic Association, vol. 58(1), pages 129-175, March.
    9. Guo, Zhichao & Feng, Yuanhua & Tan, Xiangyong, 2011. "Short- and long-term impact of remarkable economic events on the growth causes of China–Germany trade in agri-food products," Economic Modelling, Elsevier, vol. 28(6), pages 2359-2368.
    10. Grassi, Stefano & Santucci de Magistris, Paolo, 2014. "When long memory meets the Kalman filter: A comparative study," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 301-319.
    11. Zhichao Guo & Yuanhua Feng & Thomas Gries, 2015. "Changes of China’s agri-food exports to Germany caused by its accession to WTO and the 2008 financial crisis," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 7(2), pages 262-279, May.
    12. Zakamulin, Valeriy & Hunnes, John A., 2021. "Stock earnings and bond yields in the US 1871–2017: The story of a changing relationship," The Quarterly Review of Economics and Finance, Elsevier, vol. 79(C), pages 182-197.
    13. Gabriel Rodríguez, 2016. "Modeling Latin-American Stock and Forex Markets Volatility: Empirical Application of a Model with Random Level Shifts and Genuine Long Memory [Modelando la volatilidad de los mercados bursátiles y cam," Documentos de Trabajo / Working Papers 2016-416, Departamento de Economía - Pontificia Universidad Católica del Perú.
    14. Rodríguez, Gabriel, 2017. "Modeling Latin-American stock and Forex markets volatility: Empirical application of a model with random level shifts and genuine long memory," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 393-420.
    15. Kyongwook Choi & Eric Zivot, 2003. "Long Memory and Structural Changes in the Forward Discount: An Empirical Investigation," EERI Research Paper Series EERI_RP_2003_02, Economics and Econometrics Research Institute (EERI), Brussels.
    16. Dark, Jonathan, 2024. "An adaptive long memory conditional correlation model," Journal of Empirical Finance, Elsevier, vol. 75(C).
    17. Giorgio Canarella & Stephen M. Miller, 2016. "Inflation Persistence and Structural Breaks: The Experience of Inflation Targeting Countries and the US," Working papers 2016-11, University of Connecticut, Department of Economics.
    18. Giorgio Canarella & Stephen M Miller, 2017. "Inflation Persistence Before and After Inflation Targeting: A Fractional Integration Approach," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 43(1), pages 78-103, January.
    19. Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.
    20. Ata Assaf & Luis Alberiko Gil-Alana & Khaled Mokni, 2022. "True or spurious long memory in the cryptocurrency markets: evidence from a multivariate test and other Whittle estimation methods," Empirical Economics, Springer, vol. 63(3), pages 1543-1570, September.

    More about this item

    Keywords

    Long memory; Fractional integration; Structural breaks; Realized correlation; C12; C22;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:54:y:2013:i:4:p:977-991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.