Distributions of Historic Market Data - Stock Returns
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ma, Tao & Serota, R.A., 2014. "A model for stock returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 89-115.
- Adrian Dragulescu & Victor Yakovenko, 2002.
"Probability distribution of returns in the Heston model with stochastic volatility,"
Quantitative Finance, Taylor & Francis Journals, vol. 2(6), pages 443-453.
- A. Dragulescu & V. M. Yakovenko, 2002. "Probability distribution of returns in the Heston model with stochastic volatility," Computing in Economics and Finance 2002 127, Society for Computational Economics.
- Adrian A. Dragulescu & Victor M. Yakovenko, 2002. "Probability distribution of returns in the Heston model with stochastic volatility," Papers cond-mat/0203046, arXiv.org, revised Nov 2002.
- Ole E. Barndorff‐Nielsen & Neil Shephard, 2002.
"Econometric analysis of realized volatility and its use in estimating stochastic volatility models,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
- Ole E. Barndorff-Nielsen & Neil Shephard, 2000. "Econometric analysis of realised volatility and its use in estimating stochastic volatility models," Economics Papers 2001-W4, Economics Group, Nuffield College, University of Oxford, revised 05 Jul 2001.
- Neil Shephard & Ole E. Barndorff-Nielsen & University of Aarhus, 2001. "Econometric Analysis of Realised Volatility and Its Use in Estimating Stochastic Volatility Models," Economics Series Working Papers 71, University of Oxford, Department of Economics.
- Josep Perello & Jaume Masoliver & Jean-Philippe Bouchaud, 2004.
"Multiple time scales in volatility and leverage correlations: a stochastic volatility model,"
Applied Mathematical Finance, Taylor & Francis Journals, vol. 11(1), pages 27-50.
- Josep Perello & Jaume Masoliver & Jean-Philippe Bouchaud, 2003. "Multiple time scales in volatility and leverage correlation: A stochastic volatility model," Science & Finance (CFM) working paper archive 50001, Science & Finance, Capital Fund Management.
- Josep Perello & Jaume Masoliver & Jean-Philippe Bouchaud, 2003. "Multiple time scales in volatility and leverage correlations: An stochastic volatility model," Papers cond-mat/0302095, arXiv.org.
- Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
- Jaume Masoliver & Josep Perelló, 2002. "A Correlated Stochastic Volatility Model Measuring Leverage And Other Stylized Facts," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 5(05), pages 541-562.
- Praetz, Peter D, 1972. "The Distribution of Share Price Changes," The Journal of Business, University of Chicago Press, vol. 45(1), pages 49-55, January.
- Jean-Philippe Bouchaud & Andrew Matacz & Marc Potters, 2001. "The leverage effect in financial markets: retarded volatility and market panic," Science & Finance (CFM) working paper archive 0101120, Science & Finance, Capital Fund Management.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- M. Dashti Moghaddam & Zhiyuan Liu & R. A. Serota, 2019. "Distribution of Historic Market Data ¨C Implied and Realized Volatility," Applied Economics and Finance, Redfame publishing, vol. 6(5), pages 104-130, September.
- M. Dashti Moghaddam & R. A. Serota, 2018. "Combined Mutiplicative-Heston Model for Stochastic Volatility," Papers 1807.10793, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- M. Dashti Moghaddam & Zhiyuan Liu & R. A. Serota, 2019. "Distributions of Historic Market Data -- Relaxation and Correlations," Papers 1907.05348, arXiv.org, revised Feb 2020.
- Dashti Moghaddam, M. & Serota, R.A., 2021. "Combined multiplicative–Heston model for stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
- M. Dashti Moghaddam & R. A. Serota, 2018. "Combined Mutiplicative-Heston Model for Stochastic Volatility," Papers 1807.10793, arXiv.org.
- M. Dashti Moghaddam & Zhiyuan Liu & R. A. Serota, 2018. "Distributions of Historic Market Data -- Implied and Realized Volatility," Papers 1804.05279, arXiv.org.
- Jiong Liu & R. A. Serota, 2023. "Rethinking Generalized Beta family of distributions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(2), pages 1-14, February.
- M. Dashti Moghaddam & Jiong Liu & R. A. Serota, 2021. "Implied and realized volatility: A study of distributions and the distribution of difference," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 2581-2594, April.
- Jiong Liu & R. A. Serota, 2022. "Rethinking Generalized Beta Family of Distributions," Papers 2209.05225, arXiv.org.
- Jaume Masoliver & Josep Perello, 2006.
"Multiple time scales and the exponential Ornstein-Uhlenbeck stochastic volatility model,"
Quantitative Finance, Taylor & Francis Journals, vol. 6(5), pages 423-433.
- Jaume Masoliver & Josep Perello, 2005. "Multiple time scales and the exponential Ornstein-Uhlenbeck stochastic volatility model," Papers cond-mat/0501639, arXiv.org.
- Buchbinder, G.L. & Chistilin, K.M., 2007. "Multiple time scales and the empirical models for stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(1), pages 168-178.
- L. Borland & J. -Ph. Bouchaud, 2005. "On a multi-timescale statistical feedback model for volatility fluctuations," Papers physics/0507073, arXiv.org.
- Linton, Oliver & Whang, Yoon-Jae & Yen, Yu-Min, 2016.
"A nonparametric test of a strong leverage hypothesis,"
Journal of Econometrics, Elsevier, vol. 194(1), pages 153-186.
- Oliver Linton & Yoon-Jae Whang & Yu-Min Yen, 2013. "A nonparametric test of a strong leverage hypothesis," CeMMAP working papers CWP28/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Nils Bertschinger & Oliver Pfante, 2015. "Inferring Volatility in the Heston Model and its Relatives -- an Information Theoretical Approach," Papers 1512.08381, arXiv.org.
- Göncü, Ahmet & Karahan, Mehmet Oğuz & Kuzubaş, Tolga Umut, 2016.
"A comparative goodness-of-fit analysis of distributions of some Lévy processes and Heston model to stock index returns,"
The North American Journal of Economics and Finance, Elsevier, vol. 36(C), pages 69-83.
- Ahmet Göncü & Mehmet Oguz Karahan & Tolga Umut Kuzubas, 2014. "A Comparative Goodness-of-fit Analysis of Distributions of Some Levy Processes and Heston Model to Stock Index Returns," Working Papers 2014/07, Bogazici University, Department of Economics.
- Benoit Pochard & Jean-Philippe Bouchaud, 2003. "Option pricing and hedging with minimum expected shortfall," Science & Finance (CFM) working paper archive 500029, Science & Finance, Capital Fund Management.
- Ralf Remer & Reinhard Mahnke, 2004. "Application of the heston and hull-white models to german dax data," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 685-693.
- Lisa Borland & Jean-Philippe Bouchaud, 2005. "On a multi-timescale statistical feedback model for volatility fluctuations," Science & Finance (CFM) working paper archive 500059, Science & Finance, Capital Fund Management.
- Dashti Moghaddam, M. & Mills, Jeffrey & Serota, R.A., 2020. "From a stochastic model of economic exchange to measures of inequality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
- Subbotin, Alexandre, 2009. "Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 15(3), pages 94-138.
- Oliver Pfante & Nils Bertschinger, 2019. "Information-Theoretic Analysis Of Stochastic Volatility Models," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(01), pages 1-21, February.
- Giacomo Bormetti & Valentina Cazzola & Danilo Delpini, 2009. "Option pricing under Ornstein-Uhlenbeck stochastic volatility: a linear model," Papers 0905.1882, arXiv.org, revised May 2010.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-FMK-2018-01-22 (Financial Markets)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1711.11003. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.