IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2208.14038.html
   My bibliography  Save this paper

Deep Weighted Monte Carlo: A hybrid option pricing framework using neural networks

Author

Listed:
  • S'andor Kuns'agi-M'at'e
  • G'abor F'ath
  • Istv'an Csabai
  • G'abor Moln'ar-S'aska

Abstract

Recent studies have demonstrated the efficiency of Variational Autoencoders (VAE) to compress high-dimensional implied volatility surfaces into a low dimensional representation. Although this method can be effectively used for pricing vanilla options, it does not provide any explicit information about the dynamics of the underlying asset. In our work we present an effective way to overcome this problem. We use a Weighted Monte Carlo approach to first generate paths from a simple a priori Brownian dynamics, and then calculate path weights to price options correctly. We develop and successfully train a neural network that is able to assign these weights directly from the latent space. Combining the encoder network of the VAE and this new "weight assigner" module, we are able to build a dynamic pricing framework which cleanses the volatility surface from irrelevant noise fluctuations, and then can price not just vanillas, but also exotic options on this idealized vol surface. This pricing method can provide relative value signals for option traders.

Suggested Citation

  • S'andor Kuns'agi-M'at'e & G'abor F'ath & Istv'an Csabai & G'abor Moln'ar-S'aska, 2022. "Deep Weighted Monte Carlo: A hybrid option pricing framework using neural networks," Papers 2208.14038, arXiv.org, revised Dec 2022.
  • Handle: RePEc:arx:papers:2208.14038
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2208.14038
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    2. Christian Bayer & Blanka Horvath & Aitor Muguruza & Benjamin Stemper & Mehdi Tomas, 2019. "On deep calibration of (rough) stochastic volatility models," Papers 1908.08806, arXiv.org.
    3. Marco Avellaneda & Robert Buff & Craig Friedman & Nicolas Grandechamp & Lukasz Kruk & Joshua Newman, 2001. "Weighted Monte Carlo: A New Technique For Calibrating Asset-Pricing Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 91-119.
    4. Alberto Elices & Eduard Gim'enez, 2011. "Weighted Monte Carlo: Calibrating the Smile and Preserving Martingale Condition," Papers 1102.3541, arXiv.org.
    5. Maxime Bergeron & Nicholas Fung & John Hull & Zissis Poulos, 2021. "Variational Autoencoders: A Hands-Off Approach to Volatility," Papers 2102.03945, arXiv.org.
    6. Aguilar, Omar & West, Mike, 2000. "Bayesian Dynamic Factor Models and Portfolio Allocation," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 338-357, July.
    7. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    8. repec:bla:jfinan:v:53:y:1998:i:6:p:2059-2106 is not listed on IDEAS
    9. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    10. Shuaiqiang Liu & Cornelis W. Oosterlee & Sander M. Bohte, 2019. "Pricing Options and Computing Implied Volatilities using Neural Networks," Risks, MDPI, vol. 7(1), pages 1-22, February.
    11. Marco Avellaneda & Robert Buff & Craig Friedman & Nicolas Grandechamp & Lukasz Kruk & Joshua Newman, 2001. "Weighted Monte Carlo: A New Technique For Calibrating Asset-Pricing Models," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar(Volume II), chapter 9, pages 239-265, World Scientific Publishing Co. Pte. Ltd..
    12. Raquel M. Gaspar & Sara D. Lopes & Bernardo Sequeira, 2020. "Neural Network Pricing of American Put Options," Risks, MDPI, vol. 8(3), pages 1-24, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andre Catalao & Rogerio Rosenfeld, 2018. "Analytical Path-Integral Pricing of Moving-Barrier Options under non-Gaussian Distributions," Papers 1804.07852, arXiv.org.
    2. André Catalão & Rogério Rosenfeld, 2020. "Analytical Path-Integral Pricing Of Deterministic Moving-Barrier Options Under Non-Gaussian Distributions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 23(01), pages 1-52, February.
    3. Jaegi Jeon & Kyunghyun Park & Jeonggyu Huh, 2021. "Extensive networks would eliminate the demand for pricing formulas," Papers 2101.09064, arXiv.org.
    4. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    5. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    6. Antonello Loddo & Shawn Ni & Dongchu Sun, 2011. "Selection of Multivariate Stochastic Volatility Models via Bayesian Stochastic Search," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 342-355, July.
    7. Junike, Gero & Pankrashkin, Konstantin, 2022. "Precise option pricing by the COS method—How to choose the truncation range," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    8. Robert Azencott & Yutheeka Gadhyan & Roland Glowinski, 2014. "Option Pricing Accuracy for Estimated Heston Models," Papers 1404.4014, arXiv.org, revised Jul 2015.
    9. Vyacheslav Abramov & Fima Klebaner, 2007. "Estimation and Prediction of a Non-Constant Volatility," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 14(1), pages 1-23, March.
    10. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range‐Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, June.
    11. Nikita Medvedev & Zhiguang Wang, 2022. "Multistep forecast of the implied volatility surface using deep learning," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(4), pages 645-667, April.
    12. Hilmar Gudmundsson & David Vyncke, 2021. "A Generalized Weighted Monte Carlo Calibration Method for Derivative Pricing," Mathematics, MDPI, vol. 9(7), pages 1-22, March.
    13. Antal Ratku & Dirk Neumann, 2022. "Derivatives of feed-forward neural networks and their application in real-time market risk management," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 947-965, September.
    14. Lee, Woojoo & Lim, Johan & Lee, Youngjo & del Castillo, Joan, 2011. "The hierarchical-likelihood approach to autoregressive stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 248-260, January.
    15. Font, Begoña, 1998. "Modelización de series temporales financieras. Una recopilación," DES - Documentos de Trabajo. Estadística y Econometría. DS 3664, Universidad Carlos III de Madrid. Departamento de Estadística.
    16. Brandi, Giuseppe & Di Matteo, T., 2022. "Multiscaling and rough volatility: An empirical investigation," International Review of Financial Analysis, Elsevier, vol. 84(C).
    17. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2001. "High- and Low-Frequency Exchange Rate Volatility Dynamics: Range-Based Estimation of Stochastic Volatility Models," NBER Working Papers 8162, National Bureau of Economic Research, Inc.
    18. José L. Vilar-Zanón & Olivia Peraita-Ezcurra, 2019. "A linear goal programming method to recover risk neutral probabilities from options prices by maximum entropy," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 259-276, June.
    19. repec:dgr:rugsom:98a40 is not listed on IDEAS
    20. Hong, Hui & Bian, Zhicun & Chen, Naiwei, 2020. "Leverage effect on stochastic volatility for option pricing in Hong Kong: A simulation and empirical study," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2208.14038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.