IDEAS home Printed from https://ideas.repec.org/p/arx/papers/cond-mat-0204626.html
   My bibliography  Save this paper

Volatility fingerprints of large shocks: Endogeneous versus exogeneous

Author

Listed:
  • D. Sornette

    (CNRS, Univ. Nice and UCLA)

  • Y. Malevergne

    (Univ Nice and Lyon I)

  • J. F. Muzy

    (CNRS, Univ. Corsica)

Abstract

Finance is about how the continuous stream of news gets incorporated into prices. But not all news have the same impact. Can one distinguish the effects of the Sept. 11, 2001 attack or of the coup against Gorbachev on Aug., 19, 1991 from financial crashes such as Oct. 1987 as well as smaller volatility bursts? Using a parsimonious autoregressive process with long-range memory defined on the logarithm of the volatility, we predict strikingly different response functions of the price volatility to great external shocks compared to what we term endogeneous shocks, i.e., which result from the cooperative accumulation of many small shocks. These predictions are remarkably well-confirmed empirically on a hierarchy of volatility shocks. Our theory allows us to classify two classes of events (endogeneous and exogeneous) with specific signatures and characteristic precursors for the endogeneous class. It also explains the origin of endogeneous shocks as the coherent accumulations of tiny bad news, and thus unify all previous explanations of large crashes including Oct. 1987.

Suggested Citation

  • D. Sornette & Y. Malevergne & J. F. Muzy, 2002. "Volatility fingerprints of large shocks: Endogeneous versus exogeneous," Papers cond-mat/0204626, arXiv.org.
  • Handle: RePEc:arx:papers:cond-mat/0204626
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/cond-mat/0204626
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    2. D. Sornette & A. Johansen, 2001. "Significance of log-periodic precursors to financial crashes," Papers cond-mat/0106520, arXiv.org.
    3. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    4. Adam, M C & Szafarz, A, 1992. "Speculative Bubbles and Financial Markets," Oxford Economic Papers, Oxford University Press, vol. 44(4), pages 626-640, October.
    5. J-F. Muzy & D. Sornette & J. delour & A. Arneodo, 2001. "Multifractal returns and hierarchical portfolio theory," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 131-148.
    6. D. Sornette & A. Johansen, 2001. "Significance of log-periodic precursors to financial crashes," Quantitative Finance, Taylor & Francis Journals, vol. 1(4), pages 452-471.
    7. Ding, Zhuanxin & Granger, Clive W. J., 1996. "Modeling volatility persistence of speculative returns: A new approach," Journal of Econometrics, Elsevier, vol. 73(1), pages 185-215, July.
    8. A. Arnéodo & J.-F. Muzy & D. Sornette, 1998. "”Direct” causal cascade in the stock market," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 2(2), pages 277-282, March.
    9. J.A. Feigenbaum, 2001. "A statistical analysis of log-periodic precursors to financial crashes-super-," Quantitative Finance, Taylor & Francis Journals, vol. 1(3), pages 346-360, March.
    10. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    11. Granger, Clive W. J. & Ding, Zhuanxin, 1996. "Varieties of long memory models," Journal of Econometrics, Elsevier, vol. 73(1), pages 61-77, July.
    12. Muller, Ulrich A. & Dacorogna, Michel M. & Dave, Rakhal D. & Olsen, Richard B. & Pictet, Olivier V. & von Weizsacker, Jacob E., 1997. "Volatilities of different time resolutions -- Analyzing the dynamics of market components," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 213-239, June.
    13. Camerer, Colin, 1989. "Bubbles and Fads in Asset Prices," Journal of Economic Surveys, Wiley Blackwell, vol. 3(1), pages 3-41.
    14. D. Sornette & J. V. Andersen, 2002. "A Nonlinear Super-Exponential Rational Model Of Speculative Financial Bubbles," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 171-187.
    15. D. Sornette & J. V. Andersen, 2001. "A Nonlinear Super-Exponential Rational Model of Speculative Financial Bubbles," Papers cond-mat/0104341, arXiv.org, revised Apr 2002.
    16. David H. Cutler & James M. Poterba & Lawrence H. Summers, 1988. "What Moves Stock Prices?," Working papers 487, Massachusetts Institute of Technology (MIT), Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. D. Sornette & A. Helmstetter, 2002. "Endogeneous Versus Exogeneous Shocks in Systems with Memory," Papers cond-mat/0206047, arXiv.org.
    2. A. Johansen & D. Sornette, 2002. "Endogenous versus Exogenous Crashes in Financial Markets," Papers cond-mat/0210509, arXiv.org.
    3. D. Sornette, 2008. "Nurturing breakthroughs: lessons from complexity theory," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 3(2), pages 165-181, December.
    4. P. Peirano & D. Challet, 2012. "Baldovin-Stella stochastic volatility process and Wiener process mixtures," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 85(8), pages 1-12, August.
    5. O. A. Vladimirova, 2018. "Influence Of A News Background On Company Cost: Review Of Literature And Direction Of Future Researches," Strategic decisions and risk management, Real Economy Publishing House, issue 4.
    6. Eyal Carmi & Gal OEstreicher-Singer & Arun Sundararajan, 2010. "Is Oprah Contagious? Identifying Demand Spillovers in Product Networks," Working Papers 10-18, NET Institute.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Corcos & J-P Eckmann & A. Malaspinas & Y. Malevergne & D. Sornette, 2002. "Imitation and contrarian behaviour: hyperbolic bubbles, crashes and chaos," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 264-281.
    2. Lin, L. & Ren, R.E. & Sornette, D., 2014. "The volatility-confined LPPL model: A consistent model of ‘explosive’ financial bubbles with mean-reverting residuals," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 210-225.
    3. Wei-Xing Zhou & Didier Sornette, 2003. "Nonparametric Analyses Of Log-Periodic Precursors To Financial Crashes," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 14(08), pages 1107-1125.
    4. Alexander Subbotin & Thierry Chauveau & Kateryna Shapovalova, 2009. "Volatility Models: from GARCH to Multi-Horizon Cascades," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00390636, HAL.
    5. Subbotin, Alexandre, 2009. "Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 15(3), pages 94-138.
    6. Geoffrey Ngene & Ann Nduati Mungai & Allen K. Lynch, 2018. "Long-Term Dependency Structure and Structural Breaks: Evidence from the U.S. Sector Returns and Volatility," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-38, June.
    7. Zhou, Wei-Xing & Sornette, Didier, 2003. "2000–2003 real estate bubble in the UK but not in the USA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 329(1), pages 249-263.
    8. Alia Afzal & Philipp Sibbertsen, 2021. "Modeling fractional cointegration between high and low stock prices in Asian countries," Empirical Economics, Springer, vol. 60(2), pages 661-682, February.
    9. Brée, David S. & Joseph, Nathan Lael, 2013. "Testing for financial crashes using the Log Periodic Power Law model," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 287-297.
    10. Zhou, Wei-Xing & Sornette, Didier, 2003. "Evidence of a worldwide stock market log-periodic anti-bubble since mid-2000," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 330(3), pages 543-583.
    11. Abderrazak Ben Maatoug & Rim Lamouchi & Russell Davidson & Ibrahim Fatnassi, 2018. "Modelling Foreign Exchange Realized Volatility Using High Frequency Data: Long Memory versus Structural Breaks," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(1), pages 1-25, March.
    12. John M. Fry, 2009. "Statistical modelling of financial crashes: Rapid growth, illusion of certainty and contagion," EERI Research Paper Series EERI_RP_2009_10, Economics and Econometrics Research Institute (EERI), Brussels.
    13. Xingxing Ye & Raphael Douady, 2018. "Systemic Risk Indicators Based on Nonlinear PolyModel," JRFM, MDPI, vol. 12(1), pages 1-24, December.
    14. Scharth, Marcel & Medeiros, Marcelo C., 2009. "Asymmetric effects and long memory in the volatility of Dow Jones stocks," International Journal of Forecasting, Elsevier, vol. 25(2), pages 304-327.
    15. Didier SORNETTE, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based Models," Swiss Finance Institute Research Paper Series 14-25, Swiss Finance Institute.
    16. Sornette, Didier & Zhou, Wei-Xing, 2004. "Evidence of fueling of the 2000 new economy bubble by foreign capital inflow: implications for the future of the US economy and its stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 332(C), pages 412-440.
    17. Damian Smug & Peter Ashwin & Didier Sornette, 2018. "Predicting financial market crashes using ghost singularities," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-20, March.
    18. Andersen, Torben G & Bollerslev, Tim, 1997. "Heterogeneous Information Arrivals and Return Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns," Journal of Finance, American Finance Association, vol. 52(3), pages 975-1005, July.
    19. Jonathan Dark, 2004. "Bivariate error correction FIGARCH and FIAPARCH models on the Australian All Ordinaries Index and its SPI futures," Monash Econometrics and Business Statistics Working Papers 4/04, Monash University, Department of Econometrics and Business Statistics.
    20. Maheu John, 2005. "Can GARCH Models Capture Long-Range Dependence?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(4), pages 1-43, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:cond-mat/0204626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.