IDEAS home Printed from https://ideas.repec.org/p/usg/sfwpfi/201318.html
   My bibliography  Save this paper

Stylized Facts and Dynamic Modeling of High-frequency Data on Precious Metals

Author

Listed:
  • Caporin, Massimiliano
  • Ranaldo, Angelo
  • Velo, Gabriel G.

Abstract

Taking advantage of a trades-and-quotes database, the main stylized facts and dynamic properties of a time series related to spot precious metals, that is, gold, silver, palladium, and platinum, are documented. The behavior of spot prices, returns, volume, and selected liquidity measures is analyzed. A clear evidence of periodic patterns matching the trading hours of the most active markets, London, Zurich, New York, as well as Asian markets, is found. The time series of spot returns have thus properties similar to those of traditional financial assets with fat tails, asymmetry, periodic behaviors in the conditional variances, and volatility clustering. The empirical analyzes show, as expected, that gold is the most liquid and less volatile asset, whereas palladium and platinum are traded less.

Suggested Citation

  • Caporin, Massimiliano & Ranaldo, Angelo & Velo, Gabriel G., 2013. "Stylized Facts and Dynamic Modeling of High-frequency Data on Precious Metals," Working Papers on Finance 1318, University of St. Gallen, School of Finance.
  • Handle: RePEc:usg:sfwpfi:2013:18
    as

    Download full text from publisher

    File URL: http://ux-tauri.unisg.ch/RePEc/usg/sfwpfi/WPF-1318.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Loriano Mancini & Angelo Ranaldo & Jan Wrampelmeyer, 2013. "Liquidity in the Foreign Exchange Market: Measurement, Commonality, and Risk Premiums," Journal of Finance, American Finance Association, vol. 68(5), pages 1805-1841, October.
    2. Alexandros Gabrielsen & Massimiliano Marzo & Paolo Zagaglia, 2011. "Measuring market liquidity: An introductory survey," Papers 1112.6169, arXiv.org.
    3. Karim Bannouh & Dick van Dijk & Martin Martens, 2009. "Range-Based Covariance Estimation Using High-Frequency Data: The Realized Co-Range -super-," Journal of Financial Econometrics, Oxford University Press, vol. 7(4), pages 341-372, Fall.
    4. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
    5. Silvano Bordignon & Massimiliano Caporin & Francesco Lisi, 2009. "Periodic Long-Memory GARCH Models," Econometric Reviews, Taylor & Francis Journals, vol. 28(1-3), pages 60-82.
    6. Lobato, Ignacio N & Velasco, Carlos, 2000. "Long Memory in Stock-Market Trading Volume," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(4), pages 410-427, October.
    7. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    8. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Clara Vega, 2003. "Micro Effects of Macro Announcements: Real-Time Price Discovery in Foreign Exchange," American Economic Review, American Economic Association, vol. 93(1), pages 38-62, March.
    9. Bollerslev, Tim & Ghysels, Eric, 1996. "Periodic Autoregressive Conditional Heteroscedasticity," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(2), pages 139-151, April.
    10. Bollerslev, Tim & Jubinski, Dan, 1999. "Equity Trading Volume and Volatility: Latent Information Arrivals and Common Long-Run Dependencies," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(1), pages 9-21, January.
    11. Richard T. Baillie & Young-Wook Han & Robert J. Myers & Jeongseok Song, 2007. "Long Memory and FIGARCH Models for Daily and High Frequency Commodity Prices," Working Papers 594, Queen Mary University of London, School of Economics and Finance.
    12. Berger, David W. & Chaboud, Alain P. & Chernenko, Sergey V. & Howorka, Edward & Wright, Jonathan H., 2008. "Order flow and exchange rate dynamics in electronic brokerage system data," Journal of International Economics, Elsevier, vol. 75(1), pages 93-109, May.
    13. Brownlees, C.T. & Gallo, G.M., 2006. "Financial econometric analysis at ultra-high frequency: Data handling concerns," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2232-2245, December.
    14. Geert Bekaert & Campbell R. Harvey & Christian Lundblad, 2007. "Liquidity and Expected Returns: Lessons from Emerging Markets," The Review of Financial Studies, Society for Financial Studies, vol. 20(6), pages 1783-1831, November.
    15. Dominique Guegan, 2000. "A New Model: The k-Factor GIGARCH Process," Post-Print halshs-00199207, HAL.
    16. Caporin, Massimiliano & Preś, Juliusz, 2012. "Modelling and forecasting wind speed intensity for weather risk management," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3459-3476.
    17. Taylor, Stephen J. & Xu, Xinzhong, 1997. "The incremental volatility information in one million foreign exchange quotations," Journal of Empirical Finance, Elsevier, vol. 4(4), pages 317-340, December.
    18. Massimiliano Caporin & Juliusz Preś, 2013. "Forecasting Temperature Indices Density with Time‐Varying Long‐Memory Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(4), pages 339-352, July.
    19. Bordignon, Silvano & Caporin, Massimiliano & Lisi, Francesco, 2007. "Generalised long-memory GARCH models for intra-daily volatility," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5900-5912, August.
    20. Hasbrouck, Joel, 2007. "Empirical Market Microstructure: The Institutions, Economics, and Econometrics of Securities Trading," OUP Catalogue, Oxford University Press, number 9780195301649.
    21. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    22. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    23. Bollerslev, Tim & Domowitz, Ian, 1993. "Trading Patterns and Prices in the Interbank Foreign Exchange Market," Journal of Finance, American Finance Association, vol. 48(4), pages 1421-1443, September.
    24. Ahmed A. A. Khalifa & Hong Miao & Sanjay Ramchander, 2011. "Return distributions and volatility forecasting in metal futures markets: Evidence from gold, silver, and copper," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 31(1), pages 55-80, January.
    25. Dacorogna, Michael M. & Muller, Ulrich A. & Nagler, Robert J. & Olsen, Richard B. & Pictet, Olivier V., 1993. "A geographical model for the daily and weekly seasonal volatility in the foreign exchange market," Journal of International Money and Finance, Elsevier, vol. 12(4), pages 413-438, August.
    26. Boudt, Kris & Croux, Christophe & Laurent, Sébastien, 2011. "Robust estimation of intraweek periodicity in volatility and jump detection," Journal of Empirical Finance, Elsevier, vol. 18(2), pages 353-367, March.
    27. Lee, Charles M C & Ready, Mark J, 1991. "Inferring Trade Direction from Intraday Data," Journal of Finance, American Finance Association, vol. 46(2), pages 733-746, June.
    28. Fleming, Jeff & Kirby, Chris & Ostdiek, Barbara, 2003. "The economic value of volatility timing using "realized" volatility," Journal of Financial Economics, Elsevier, vol. 67(3), pages 473-509, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Massimiliano Caporin & Angelo Ranaldo & Gabriel G. Velo, 2015. "Precious metals under the microscope: a high-frequency analysis," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 743-759, May.
    2. Rossi, Eduardo & Santucci de Magistris, Paolo, 2013. "Long memory and tail dependence in trading volume and volatility," Journal of Empirical Finance, Elsevier, vol. 22(C), pages 94-112.
    3. Yi, Chae-Deug, 2020. "Jump probability using volatility periodicity filters in US Dollar/Euro exchange rates," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
    4. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    5. Deniz Erdemlioglu & Sébastien Laurent & Christopher J. Neely, 2013. "Econometric modeling of exchange rate volatility and jumps," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 16, pages 373-427, Edward Elgar Publishing.
    6. repec:uts:finphd:39 is not listed on IDEAS
    7. repec:uts:finphd:38 is not listed on IDEAS
    8. Sévi, Benoît, 2014. "Forecasting the volatility of crude oil futures using intraday data," European Journal of Operational Research, Elsevier, vol. 235(3), pages 643-659.
    9. Su, Fei, 2021. "Conditional volatility persistence and volatility spillovers in the foreign exchange market," Research in International Business and Finance, Elsevier, vol. 55(C).
    10. Fei Su, 2018. "Essays on Price Discovery and Volatility Dynamics in the Foreign Exchange Market," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2018, January-A.
    11. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    12. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01442618, HAL.
    13. Chorro, Christophe & Ielpo, Florian & Sévi, Benoît, 2020. "The contribution of intraday jumps to forecasting the density of returns," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    14. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2015. "Wave function method to forecast foreign currencies exchange rates at ultra high frequency electronic trading in foreign currencies exchange markets," MPRA Paper 67470, University Library of Munich, Germany.
    15. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    16. Jean-Yves Gnabo & J�rôme Lahaye & S�bastien Laurent & Christelle Lecourt, 2012. "Do jumps mislead the FX market?," Quantitative Finance, Taylor & Francis Journals, vol. 12(10), pages 1521-1532, October.
    17. Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
    18. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2020. "The contribution of intraday jumps to forecasting the density of returns," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02505861, HAL.
    19. Busch, Thomas & Christensen, Bent Jesper & Nielsen, Morten Ørregaard, 2011. "The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets," Journal of Econometrics, Elsevier, vol. 160(1), pages 48-57, January.
    20. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2020. "The contribution of intraday jumps to forecasting the density of returns," Post-Print halshs-02505861, HAL.
    21. Eduardo Rossi & Dean Fantazzini, 2015. "Long Memory and Periodicity in Intraday Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 13(4), pages 922-961.
    22. Torben G. Andersen & Tim Bollerslev & Per Frederiksen & Morten Ørregaard Nielsen, 2010. "Continuous-time models, realized volatilities, and testable distributional implications for daily stock returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 233-261.

    More about this item

    Keywords

    precious metals; high-frequency data; liquidity measurement; intradaily periodicity;
    All these keywords.

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:usg:sfwpfi:2013:18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/cfisgch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.