IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v21y2017i2d10.1007_s00780-017-0325-7.html
   My bibliography  Save this article

Jump-robust estimation of volatility with simultaneous presence of microstructure noise and multiple observations

Author

Listed:
  • Zhi Liu

    (University of Macau
    UM Zhuhai Research Institute)

Abstract

In this paper, we develop the multipower estimators for the integrated volatility in (Barndorff-Nielsen and Shephard in J. Financ. Econom. 2:1–37, 2004); these estimators allow the presence of jumps in the underlying driving process and the simultaneous presence of microstructure noise and multiple records of observations. By multiple records we mean more than one observation recorded on a single time stamp, as often seen in stock markets, in particular, for heavily traded securities, for a data set with even millisecond frequency. We establish the consistency and asymptotic normality of the estimators for both noise-free and noise-present cases. Simulation studies confirm our theoretical results. We apply the estimators to a real high-frequency data set.

Suggested Citation

  • Zhi Liu, 2017. "Jump-robust estimation of volatility with simultaneous presence of microstructure noise and multiple observations," Finance and Stochastics, Springer, vol. 21(2), pages 427-469, April.
  • Handle: RePEc:spr:finsto:v:21:y:2017:i:2:d:10.1007_s00780-017-0325-7
    DOI: 10.1007/s00780-017-0325-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00780-017-0325-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00780-017-0325-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:hal:journl:peer-00815564 is not listed on IDEAS
    2. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    3. Todorov, Viktor & Tauchen, George, 2010. "Activity signature functions for high-frequency data analysis," Journal of Econometrics, Elsevier, vol. 154(2), pages 125-138, February.
    4. Takaki Hayashi & Nakahiro Yoshida, 2008. "Asymptotic normality of a covariance estimator for nonsynchronously observed diffusion processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(2), pages 367-406, June.
    5. Podolskij, Mark & Vetter, Mathias, 2009. "Bipower-type estimation in a noisy diffusion setting," Stochastic Processes and their Applications, Elsevier, vol. 119(9), pages 2803-2831, September.
    6. Kim Christensen & Mark Podolskij, 2012. "Asymptotic Theory of Range-Based Multipower Variation," Journal of Financial Econometrics, Oxford University Press, vol. 10(3), pages 417-456, June.
    7. Jing, Bing-Yi & Liu, Zhi & Kong, Xin-Bing, 2017. "Estimating Volatility Functionals With Multiple Transactions," Econometric Theory, Cambridge University Press, vol. 33(2), pages 331-365, April.
    8. Barndorff-Nielsen, Ole E. & Hansen, Peter Reinhard & Lunde, Asger & Shephard, Neil, 2011. "Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," Journal of Econometrics, Elsevier, vol. 162(2), pages 149-169, June.
    9. Jacod, Jean & Li, Yingying & Mykland, Per A. & Podolskij, Mark & Vetter, Mathias, 2009. "Microstructure noise in the continuous case: The pre-averaging approach," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2249-2276, July.
    10. Yacine Aït-Sahalia & Jean Jacod, 2012. "Analyzing the Spectrum of Asset Returns: Jump and Volatility Components in High Frequency Data," Journal of Economic Literature, American Economic Association, vol. 50(4), pages 1007-1050, December.
    11. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    12. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    13. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    14. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise," Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
    15. Christensen, Kim & Kinnebrock, Silja & Podolskij, Mark, 2010. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," Journal of Econometrics, Elsevier, vol. 159(1), pages 116-133, November.
    16. Xiu, Dacheng, 2010. "Quasi-maximum likelihood estimation of volatility with high frequency data," Journal of Econometrics, Elsevier, vol. 159(1), pages 235-250, November.
    17. Li, Yingying & Mykland, Per A. & Renault, Eric & Zhang, Lan & Zheng, Xinghua, 2014. "Realized Volatility When Sampling Times Are Possibly Endogenous," Econometric Theory, Cambridge University Press, vol. 30(3), pages 580-605, June.
    18. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
    19. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    20. Torben G. Andersen & Tim Bollerslev & Per Frederiksen & Morten Ørregaard Nielsen, 2010. "Continuous-time models, realized volatilities, and testable distributional implications for daily stock returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 233-261.
    21. Aït-Sahalia, Yacine & Xiu, Dacheng, 2016. "Increased correlation among asset classes: Are volatility or jumps to blame, or both?," Journal of Econometrics, Elsevier, vol. 194(2), pages 205-219.
    22. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    23. Dimson, Elroy, 1979. "Risk measurement when shares are subject to infrequent trading," Journal of Financial Economics, Elsevier, vol. 7(2), pages 197-226, June.
    24. repec:hal:journl:peer-00732537 is not listed on IDEAS
    25. Jing, Bing-Yi & Kong, Xin-Bing & Liu, Zhi & Mykland, Per, 2012. "On the jump activity index for semimartingales," Journal of Econometrics, Elsevier, vol. 166(2), pages 213-223.
    26. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erlin Guo & Cuixia Li & Fengqin Tang, 2023. "The Convergence Rates of Large Volatility Matrix Estimator Based on Noise, Jumps, and Asynchronization," Mathematics, MDPI, vol. 11(6), pages 1-11, March.
    2. Liu, Zhi & Kong, Xin-Bing & Jing, Bing-Yi, 2018. "Estimating the integrated volatility using high-frequency data with zero durations," Journal of Econometrics, Elsevier, vol. 204(1), pages 18-32.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023. "The contribution of jump signs and activity to forecasting stock price volatility," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
    2. Mykland, Per A. & Zhang, Lan, 2016. "Between data cleaning and inference: Pre-averaging and robust estimators of the efficient price," Journal of Econometrics, Elsevier, vol. 194(2), pages 242-262.
    3. Liu, Zhi & Kong, Xin-Bing & Jing, Bing-Yi, 2018. "Estimating the integrated volatility using high-frequency data with zero durations," Journal of Econometrics, Elsevier, vol. 204(1), pages 18-32.
    4. Shephard, Neil & Xiu, Dacheng, 2017. "Econometric analysis of multivariate realised QML: Estimation of the covariation of equity prices under asynchronous trading," Journal of Econometrics, Elsevier, vol. 201(1), pages 19-42.
    5. Bibinger, Markus & Mykland, Per A., 2013. "Inference for multi-dimensional high-frequency data: Equivalence of methods, central limit theorems, and an application to conditional independence testing," SFB 649 Discussion Papers 2013-006, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    6. Christensen, K. & Podolskij, M. & Thamrongrat, N. & Veliyev, B., 2017. "Inference from high-frequency data: A subsampling approach," Journal of Econometrics, Elsevier, vol. 197(2), pages 245-272.
    7. Yoann Potiron & Per Mykland, 2020. "Local Parametric Estimation in High Frequency Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(3), pages 679-692, July.
    8. Neil Shephard & Dacheng Xiu, 2012. "Econometric analysis of multivariate realised QML: efficient positive semi-definite estimators of the covariation of equity prices," Economics Series Working Papers 604, University of Oxford, Department of Economics.
    9. Christensen, Kim & Kinnebrock, Silja & Podolskij, Mark, 2010. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," Journal of Econometrics, Elsevier, vol. 159(1), pages 116-133, November.
    10. Ilze Kalnina, 2023. "Inference for Nonparametric High-Frequency Estimators with an Application to Time Variation in Betas," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(2), pages 538-549, April.
    11. Simon Clinet & Yoann Potiron, 2021. "Estimation for high-frequency data under parametric market microstructure noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(4), pages 649-669, August.
    12. Li, Yingying & Liu, Guangying & Zhang, Zhiyuan, 2022. "Volatility of volatility: Estimation and tests based on noisy high frequency data with jumps," Journal of Econometrics, Elsevier, vol. 229(2), pages 422-451.
    13. Hounyo, Ulrich, 2017. "Bootstrapping integrated covariance matrix estimators in noisy jump–diffusion models with non-synchronous trading," Journal of Econometrics, Elsevier, vol. 197(1), pages 130-152.
    14. Song, Xinyu & Kim, Donggyu & Yuan, Huiling & Cui, Xiangyu & Lu, Zhiping & Zhou, Yong & Wang, Yazhen, 2021. "Volatility analysis with realized GARCH-Itô models," Journal of Econometrics, Elsevier, vol. 222(1), pages 393-410.
    15. Qiang Liu & Zhi Liu & Chuanhai Zhang, 2020. "Heteroscedasticity test of high-frequency data with jumps and microstructure noise," Papers 2010.07659, arXiv.org.
    16. repec:hum:wpaper:sfb649dp2013-006 is not listed on IDEAS
    17. Kim Christensen & Ulrich Hounyo & Mark Podolskij, 2016. "Testing for heteroscedasticity in jumpy and noisy high-frequency data: A resampling approach," CREATES Research Papers 2016-27, Department of Economics and Business Economics, Aarhus University.
    18. Shen, Keren & Yao, Jianfeng & Li, Wai Keung, 2019. "On a spiked model for large volatility matrix estimation from noisy high-frequency data," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 207-221.
    19. Kim, Jihyun & Meddahi, Nour, 2020. "Volatility regressions with fat tails," Journal of Econometrics, Elsevier, vol. 218(2), pages 690-713.
    20. Kim Christensen & Ulrich Hounyo & Mark Podolskij, 2017. "Is the diurnal pattern sufficient to explain the intraday variation in volatility? A nonparametric assessment," CREATES Research Papers 2017-30, Department of Economics and Business Economics, Aarhus University.
    21. Hounyo, Ulrich & Gonçalves, Sílvia & Meddahi, Nour, 2017. "Bootstrapping Pre-Averaged Realized Volatility Under Market Microstructure Noise," Econometric Theory, Cambridge University Press, vol. 33(4), pages 791-838, August.

    More about this item

    Keywords

    Integrated volatility; High-frequency data; Multiple observations; Stable convergence;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C80 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:21:y:2017:i:2:d:10.1007_s00780-017-0325-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.