IDEAS home Printed from https://ideas.repec.org/p/fip/fedpwp/89577.html
   My bibliography  Save this paper

DSGE-SVt: An Econometric Toolkit for High-Dimensional DSGE Models with SV and t Errors

Author

Abstract

Currently, there is growing interest in dynamic stochastic general equilibrium (DSGE) models that have more parameters, endogenous variables, exogenous shocks, and observables than the Smets and Wouters (2007) model, and substantial additional complexities from non-Gaussian distributions and the incorporation of time-varying volatility. The popular DYNARE software package, which has proved useful for small and medium-scale models is, however, not capable of handling such models, thus inhibiting the formulation and estimation of more re-alistic DSGE models. A primary goal of this paper is to introduce a user-friendly MATLAB software program designed to reliably estimate high-dimensional DSGE models. It simulates the posterior distribution by the tailored random block Metropolis-Hastings (TaRB-MH) algo-rithm of Chib and Ramamurthy (2010), calculates the marginal likelihood by the method of Chib (1995) and Chib and Jeliazkov (2001), and includes various post-estimation tools that are important for policy analysis, for example, functions for generating point and density forecasts. Another goal is to provide pointers on the prior, estimation, and comparison of these DSGE models. An extended version of the new Keynesian model of Leeper, Traum, and Walker (2017) that has 51 parameters, 21 endogenous variables, 8 exogenous shocks, 8 observables, and 1,494 non-Gaussian and nonlinear latent variables is considered in detail.

Suggested Citation

  • Siddhartha Chib & Minchul Shin & Fei Tan, 2021. "DSGE-SVt: An Econometric Toolkit for High-Dimensional DSGE Models with SV and t Errors," Working Papers 21-02, Federal Reserve Bank of Philadelphia.
  • Handle: RePEc:fip:fedpwp:89577
    DOI: 10.21799/frbp.wp.2021.02
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rong Chen & Jun S. Liu, 2000. "Mixture Kalman filters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(3), pages 493-508.
    2. Diebold, Francis X. & Schorfheide, Frank & Shin, Minchul, 2017. "Real-time forecast evaluation of DSGE models with stochastic volatility," Journal of Econometrics, Elsevier, vol. 201(2), pages 322-332.
    3. Franta, Michal, 2017. "Rare shocks vs. non-linearities: What drives extreme events in the economy? Some empirical evidence," Journal of Economic Dynamics and Control, Elsevier, vol. 75(C), pages 136-157.
    4. Chiu, Ching-Wai (Jeremy) & Mumtaz, Haroon & Pintér, Gábor, 2017. "Forecasting with VAR models: Fat tails and stochastic volatility," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1124-1143.
    5. Alejandro Justiniano & Giorgio E. Primiceri, 2008. "The Time-Varying Volatility of Macroeconomic Fluctuations," American Economic Review, American Economic Association, vol. 98(3), pages 604-641, June.
    6. Vasco Cúrdia & Marco Del Negro & Daniel L. Greenwald, 2014. "Rare Shocks, Great Recessions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1031-1052, November.
    7. Sims, Christopher A. & Waggoner, Daniel F. & Zha, Tao, 2008. "Methods for inference in large multiple-equation Markov-switching models," Journal of Econometrics, Elsevier, vol. 146(2), pages 255-274, October.
    8. Eric M. Leeper & Nora Traum & Todd B. Walker, 2017. "Clearing Up the Fiscal Multiplier Morass," American Economic Review, American Economic Association, vol. 107(8), pages 2409-2454, August.
    9. Born, Benjamin & Pfeifer, Johannes, 2014. "Policy risk and the business cycle," Journal of Monetary Economics, Elsevier, vol. 68(C), pages 68-85.
    10. Kulish, Mariano & Morley, James & Robinson, Tim, 2017. "Estimating DSGE models with zero interest rate policy," Journal of Monetary Economics, Elsevier, vol. 88(C), pages 35-49.
    11. Chan, Joshua C.C. & Grant, Angelia L., 2015. "Pitfalls of estimating the marginal likelihood using the modified harmonic mean," Economics Letters, Elsevier, vol. 131(C), pages 29-33.
    12. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    13. Siddhartha Chib & Xiaming Zeng, 2020. "Which Factors are Risk Factors in Asset Pricing? A Model Scan Framework," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(4), pages 771-783, October.
    14. Young Min Kim & Kyu Ho Kang, 2019. "Likelihood inference for dynamic linear models with Markov switching parameters: on the efficiency of the Kim filter," Econometric Reviews, Taylor & Francis Journals, vol. 38(10), pages 1109-1130, November.
    15. Angelo Mele, 2020. "Does School Desegregation Promote Diverse Interactions? An Equilibrium Model of Segregation within Schools," American Economic Journal: Economic Policy, American Economic Association, vol. 12(2), pages 228-257, May.
    16. Chib, Siddhartha & Ramamurthy, Srikanth, 2010. "Tailored randomized block MCMC methods with application to DSGE models," Journal of Econometrics, Elsevier, vol. 155(1), pages 19-38, March.
    17. Chib S. & Jeliazkov I., 2001. "Marginal Likelihood From the Metropolis-Hastings Output," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 270-281, March.
    18. Champagne, Julien & Kurmann, André, 2013. "The great increase in relative wage volatility in the United States," Journal of Monetary Economics, Elsevier, vol. 60(2), pages 166-183.
    19. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
    20. Eben Lazarus & Daniel J. Lewis & James H. Stock & Mark W. Watson, 2018. "HAR Inference: Recommendations for Practice," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(4), pages 541-559, October.
    21. Alexander Rathke & Tobias Straumann & Ulrich Woitek, 2017. "OVERVALUED: SWEDISH MONETARY POLICY IN THE 1930s," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 58(4), pages 1355-1369, November.
    22. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    23. Chib, Siddhartha & Ergashev, Bakhodir, 2009. "Analysis of Multifactor Affine Yield Curve Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1324-1337.
    24. Siddhartha Chib & Srikanth Ramamurthy, 2014. "DSGE Models with Student- t Errors," Econometric Reviews, Taylor & Francis Journals, vol. 33(1-4), pages 152-171, June.
    25. Chib, Siddhartha & Greenberg, Edward, 1995. "Hierarchical analysis of SUR models with extensions to correlated serial errors and time-varying parameter models," Journal of Econometrics, Elsevier, vol. 68(2), pages 339-360, August.
    26. Eben Lazarus & Daniel J. Lewis & James H. Stock & Mark W. Watson, 2018. "HAR Inference: Recommendations for Practice Rejoinder," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(4), pages 574-575, October.
    27. Liu, Xiaochun, 2019. "On tail fatness of macroeconomic dynamics," Journal of Macroeconomics, Elsevier, vol. 62(C).
    28. Edward P. Herbst & Frank Schorfheide, 2016. "Bayesian Estimation of DSGE Models," Economics Books, Princeton University Press, edition 1, number 10612.
    29. Kapetanios, George & Masolo, Riccardo M. & Petrova, Katerina & Waldron, Matthew, 2019. "A time-varying parameter structural model of the UK economy," Journal of Economic Dynamics and Control, Elsevier, vol. 106(C), pages 1-1.
    30. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.
    31. Sims, Christopher A, 2002. "Solving Linear Rational Expectations Models," Computational Economics, Springer;Society for Computational Economics, vol. 20(1-2), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino & Elmar Mertens, 2024. "Addressing COVID-19 Outliers in BVARs with Stochastic Volatility," The Review of Economics and Statistics, MIT Press, vol. 106(5), pages 1403-1417, September.
    2. Li, Bing & Pei, Pei & Tan, Fei, 2021. "Financial distress and fiscal inflation," Journal of Macroeconomics, Elsevier, vol. 70(C).
    3. Chang, Yoosoon & Maih, Junior & Tan, Fei, 2021. "Origins of monetary policy shifts: A New approach to regime switching in DSGE models," Journal of Economic Dynamics and Control, Elsevier, vol. 133(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siddhartha Chib & Minchul Shin & Fei Tan, 2020. "High-Dimensional DSGE Models: Pointers on Prior, Estimation, Comparison, and Prediction∗," Working Papers 20-35, Federal Reserve Bank of Philadelphia.
    2. Siddhartha Chib & Srikanth Ramamurthy, 2014. "DSGE Models with Student- t Errors," Econometric Reviews, Taylor & Francis Journals, vol. 33(1-4), pages 152-171, June.
    3. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    4. Karlsson, Sune & Mazur, Stepan & Nguyen, Hoang, 2023. "Vector autoregression models with skewness and heavy tails," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    5. Todd E. Clark & Michael W. McCracken & Elmar Mertens, 2020. "Modeling Time-Varying Uncertainty of Multiple-Horizon Forecast Errors," The Review of Economics and Statistics, MIT Press, vol. 102(1), pages 17-33, March.
    6. Xiao-Li Gong & Jin-Yan Lu & Xiong Xiong & Wei Zhang, 2022. "Higher-order dynamic effects of uncertainty risk under thick-tailed stochastic volatility," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-22, December.
    7. Paccagnini, Alessia, 2017. "Dealing with Misspecification in DSGE Models: A Survey," MPRA Paper 82914, University Library of Munich, Germany.
    8. Lindé, Jesper & Smets, Frank & Wouters, Rafael, 2016. "Challenges for Central Banks´ Macro Models," Working Paper Series 323, Sveriges Riksbank (Central Bank of Sweden).
    9. Vasco Cúrdia & Marco Del Negro & Daniel L. Greenwald, 2014. "Rare Shocks, Great Recessions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1031-1052, November.
    10. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino & Elmar Mertens, 2024. "Addressing COVID-19 Outliers in BVARs with Stochastic Volatility," The Review of Economics and Statistics, MIT Press, vol. 106(5), pages 1403-1417, September.
    11. Mertens, Elmar, 2023. "Precision-based sampling for state space models that have no measurement error," Journal of Economic Dynamics and Control, Elsevier, vol. 154(C).
    12. Kapetanios, George & Masolo, Riccardo M. & Petrova, Katerina & Waldron, Matthew, 2019. "A time-varying parameter structural model of the UK economy," Journal of Economic Dynamics and Control, Elsevier, vol. 106(C), pages 1-1.
    13. Negro, Marco Del & Schorfheide, Frank, 2013. "DSGE Model-Based Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 57-140, Elsevier.
    14. Yoosoon Chang & Fei Tan & Xin Wei, 2018. "State Space Models with Endogenous Regime Switching," CAEPR Working Papers 2018-012, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    15. Çekin, Semih Emre & Ivashchenko, Sergey & Gupta, Rangan & Lee, Chien-Chiang, 2024. "Real-time forecast of DSGE models with time-varying volatility in GARCH form," International Review of Financial Analysis, Elsevier, vol. 93(C).
    16. Drew Creal, 2012. "A Survey of Sequential Monte Carlo Methods for Economics and Finance," Econometric Reviews, Taylor & Francis Journals, vol. 31(3), pages 245-296.
    17. Li, Bing & Pei, Pei & Tan, Fei, 2021. "Financial distress and fiscal inflation," Journal of Macroeconomics, Elsevier, vol. 70(C).
    18. Chiu, Ching-Wai (Jeremy) & Mumtaz, Haroon & Pintér, Gábor, 2017. "Forecasting with VAR models: Fat tails and stochastic volatility," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1124-1143.
    19. Lindé, J. & Smets, F. & Wouters, R., 2016. "Challenges for Central Banks’ Macro Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 2185-2262, Elsevier.
    20. Ramis Khabibullin & Sergei Seleznev, 2022. "Fast Estimation of Bayesian State Space Models Using Amortized Simulation-Based Inference," Papers 2210.07154, arXiv.org.

    More about this item

    Keywords

    Bayesian inference; Marginal likelihood; Tailored proposal densities; Random blocks; Student-t shocks; Stochastic volatility.;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • E63 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - Comparative or Joint Analysis of Fiscal and Monetary Policy; Stabilization; Treasury Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedpwp:89577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Beth Paul (email available below). General contact details of provider: https://edirc.repec.org/data/frbphus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.