IDEAS home Printed from https://ideas.repec.org/a/wly/ijfiec/v26y2021i2p2581-2594.html
   My bibliography  Save this article

Implied and realized volatility: A study of distributions and the distribution of difference

Author

Listed:
  • M. Dashti Moghaddam
  • Jiong Liu
  • R. A. Serota

Abstract

We study distributions of realized variance (squared realized volatility) and squared implied volatility, as represented by VIX and VXO indices. We find that generalized beta distribution provide the best fits. These fits are much more accurate for realized variance than for squared VIX and VXO—possibly another indicator that the latter have deficiencies in predicting the former. We also show that there are noticeable differences between the distributions of the 1970–2017 realized variance and its 1990–2017 portion, for which VIX and VXO became available. This may be indicative of a feedback effect that implied volatility has on realized volatility. We also discuss the distribution of the difference between squared implied volatility and realized variance and show that, at the basic level, it is consistent with Pearson's correlations obtained from linear regression.

Suggested Citation

  • M. Dashti Moghaddam & Jiong Liu & R. A. Serota, 2021. "Implied and realized volatility: A study of distributions and the distribution of difference," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 2581-2594, April.
  • Handle: RePEc:wly:ijfiec:v:26:y:2021:i:2:p:2581-2594
    DOI: 10.1002/ijfe.1922
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ijfe.1922
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ijfe.1922?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nelson, Daniel B., 1990. "ARCH models as diffusion approximations," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 7-38.
    2. Adrian Dragulescu & Victor Yakovenko, 2002. "Probability distribution of returns in the Heston model with stochastic volatility," Quantitative Finance, Taylor & Francis Journals, vol. 2(6), pages 443-453.
    3. Bollerslev, Tim & Gibson, Michael & Zhou, Hao, 2011. "Dynamic estimation of volatility risk premia and investor risk aversion from option-implied and realized volatilities," Journal of Econometrics, Elsevier, vol. 160(1), pages 235-245, January.
    4. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    5. Peter Carr & Hélyette Geman & Dilip Madan & Marc Yor, 2005. "Pricing options on realized variance," Finance and Stochastics, Springer, vol. 9(4), pages 453-475, October.
    6. Degiannakis, Stavros, 2018. "Multiple days ahead realized volatility forecasting: Single, combined and average forecasts," Global Finance Journal, Elsevier, vol. 36(C), pages 41-61.
    7. Behfar, Stefan Kambiz, 2016. "Long memory behavior of returns after intraday financial jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 716-725.
    8. Ma, Tao & Holden, John G. & Serota, R.A., 2013. "Distribution of wealth in a network model of the economy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2434-2441.
    9. Ma, Tao & Serota, R.A., 2014. "A model for stock returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 89-115.
    10. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiong Liu & M. Dashti Moghaddam & R. A. Serota, 2023. "Are there Dragon Kings in the Stock Market?," Papers 2307.03693, arXiv.org.
    2. Božović, Miloš, 2024. "VIX-managed portfolios," International Review of Financial Analysis, Elsevier, vol. 95(PA).
    3. Jiong Liu & R. A. Serota, 2023. "Rethinking Generalized Beta family of distributions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(2), pages 1-14, February.
    4. Jiong Liu & R. A. Serota, 2022. "Rethinking Generalized Beta Family of Distributions," Papers 2209.05225, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiong Liu & R. A. Serota, 2023. "Rethinking Generalized Beta family of distributions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(2), pages 1-14, February.
    2. M. Dashti Moghaddam & Zhiyuan Liu & R. A. Serota, 2018. "Distributions of Historic Market Data -- Implied and Realized Volatility," Papers 1804.05279, arXiv.org.
    3. Dashti Moghaddam, M. & Serota, R.A., 2021. "Combined multiplicative–Heston model for stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    4. M. Dashti Moghaddam & R. A. Serota, 2018. "Combined Mutiplicative-Heston Model for Stochastic Volatility," Papers 1807.10793, arXiv.org.
    5. Dashti Moghaddam, M. & Mills, Jeffrey & Serota, R.A., 2020. "From a stochastic model of economic exchange to measures of inequality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    6. Jiong Liu & R. A. Serota, 2022. "Rethinking Generalized Beta Family of Distributions," Papers 2209.05225, arXiv.org.
    7. M. Dashti Moghaddam & Zhiyuan Liu & R. A. Serota, 2019. "Distributions of Historic Market Data -- Relaxation and Correlations," Papers 1907.05348, arXiv.org, revised Feb 2020.
    8. Ole E. Barndorff-Nielsen & Neil Shephard, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," OFRC Working Papers Series 2005fe08, Oxford Financial Research Centre.
    9. M. Dashti Moghaddam & Zhiyuan Liu & R. A. Serota, 2019. "Distribution of Historic Market Data ¨C Implied and Realized Volatility," Applied Economics and Finance, Redfame publishing, vol. 6(5), pages 104-130, September.
    10. Chourdakis, Kyriakos & Dotsis, George, 2011. "Maximum likelihood estimation of non-affine volatility processes," Journal of Empirical Finance, Elsevier, vol. 18(3), pages 533-545, June.
    11. Zhiyuan Liu & M. Dashti Moghaddam & R. A. Serota, 2017. "Distributions of Historic Market Data - Stock Returns," Papers 1711.11003, arXiv.org, revised Dec 2017.
    12. Nour Meddahi, 2002. "A theoretical comparison between integrated and realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.
    13. Linton, Oliver & Whang, Yoon-Jae & Yen, Yu-Min, 2016. "A nonparametric test of a strong leverage hypothesis," Journal of Econometrics, Elsevier, vol. 194(1), pages 153-186.
    14. Peter C. B. Phillips & Jun Yu, 2023. "Information loss in volatility measurement with flat price trading," Empirical Economics, Springer, vol. 64(6), pages 2957-2999, June.
    15. Robert Azencott & Yutheeka Gadhyan & Roland Glowinski, 2014. "Option Pricing Accuracy for Estimated Heston Models," Papers 1404.4014, arXiv.org, revised Jul 2015.
    16. DeMiguel, Victor & Plyakha, Yuliya & Uppal, Raman & Vilkov, Grigory, 2013. "Improving Portfolio Selection Using Option-Implied Volatility and Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(6), pages 1813-1845, December.
    17. Gael M. Martin & Andrew Reidy & Jill Wright, 2009. "Does the option market produce superior forecasts of noise-corrected volatility measures?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(1), pages 77-104.
    18. Torben G. Andersen & Luca Benzoni, 2008. "Realized volatility," Working Paper Series WP-08-14, Federal Reserve Bank of Chicago.
    19. Nour Meddahi, 2003. "ARMA representation of integrated and realized variances," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 335-356, December.
    20. Ishida, I. & McAleer, M.J. & Oya, K., 2011. "Estimating the Leverage Parameter of Continuous-time Stochastic Volatility Models Using High Frequency S&P 500 VIX," Econometric Institute Research Papers EI 2011-10, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:ijfiec:v:26:y:2021:i:2:p:2581-2594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1076-9307/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.