IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1908.03137.html
   My bibliography  Save this paper

Fast Pricing of Energy Derivatives with Mean-reverting Jump-diffusion Processes

Author

Listed:
  • Nicola Cufaro Petroni
  • Piergiacomo Sabino

Abstract

Most energy and commodity markets exhibit mean-reversion and occasional distinctive price spikes, which results in demand for derivative products which protect the holder against high prices. To this end, in this paper we present exact and fast methodologies for the simulation of the spot price dynamics modeled as the exponential of the sum of an Ornstein-Uhlenbeck and an independent pure jump process, where the latter one is driven by a compound Poisson process with (bilateral) exponentially distributed jumps. These methodologies are finally applied to the pricing of Asian options, gas storages and swings under different combinations of jump-diffusion market models, and the apparent computational advantages of the proposed procedures are emphasized.

Suggested Citation

  • Nicola Cufaro Petroni & Piergiacomo Sabino, 2019. "Fast Pricing of Energy Derivatives with Mean-reverting Jump-diffusion Processes," Papers 1908.03137, arXiv.org, revised Mar 2020.
  • Handle: RePEc:arx:papers:1908.03137
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1908.03137
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fred Espen Benth & Anca Pircalabu, 2018. "A non-Gaussian Ornstein–Uhlenbeck model for pricing wind power futures," Applied Mathematical Finance, Taylor & Francis Journals, vol. 25(1), pages 36-65, January.
    2. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    3. Mats Kjaer, 2008. "Pricing of Swing Options in a Mean Reverting Model with Jumps," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(5-6), pages 479-502.
    4. Alvaro Cartea & Marcelo Figueroa, 2005. "Pricing in Electricity Markets: A Mean Reverting Jump Diffusion Model with Seasonality," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(4), pages 313-335.
    5. Eduardo Schwartz & James E. Smith, 2000. "Short-Term Variations and Long-Term Dynamics in Commodity Prices," Management Science, INFORMS, vol. 46(7), pages 893-911, July.
    6. Thilo Meyer-Brandis & Peter Tankov, 2008. "Multi-Factor Jump-Diffusion Models Of Electricity Prices," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(05), pages 503-528.
    7. Lindskog, Filip & McNeil, Alexander J., 2003. "Common Poisson Shock Models: Applications to Insurance and Credit Risk Modelling," ASTIN Bulletin, Cambridge University Press, vol. 33(2), pages 209-238, November.
    8. T. Pellegrino & P. Sabino, 2015. "Enhancing Least Squares Monte Carlo with diffusion bridges: an application to energy facilities," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 761-772, May.
    9. Panjer, Harry H. & Willmot, Gordon E., 1981. "Finite Sum Evaluation of the Negative Binomial-Exponential Model," ASTIN Bulletin, Cambridge University Press, vol. 12(2), pages 133-137, December.
    10. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    11. Fred Espen Benth & Jan Kallsen & Thilo Meyer-Brandis, 2007. "A Non-Gaussian Ornstein-Uhlenbeck Process for Electricity Spot Price Modeling and Derivatives Pricing," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(2), pages 153-169.
    12. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piergiacomo Sabino, 2020. "Exact Simulation of Variance Gamma related OU processes: Application to the Pricing of Energy Derivatives," Papers 2004.06786, arXiv.org.
    2. Piergiacomo Sabino, 2021. "Normal Tempered Stable Processes and the Pricing of Energy Derivatives," Papers 2105.03071, arXiv.org.
    3. Nicola Cufaro Petroni & Piergiacomo Sabino, 2020. "Gamma Related Ornstein-Uhlenbeck Processes and their Simulation," Papers 2003.08810, arXiv.org.
    4. Piergiacomo Sabino, 2021. "Pricing Energy Derivatives in Markets Driven by Tempered Stable and CGMY Processes of Ornstein-Uhlenbeck Type," Papers 2103.13252, arXiv.org.
    5. Deschatre, Thomas & Féron, Olivier & Gruet, Pierre, 2021. "A survey of electricity spot and futures price models for risk management applications," Energy Economics, Elsevier, vol. 102(C).
    6. Marcelo G. Figueroa, 2006. "Pricing Multiple Interruptible-Swing Contracts," Birkbeck Working Papers in Economics and Finance 0606, Birkbeck, Department of Economics, Mathematics & Statistics.
    7. Gonzalez, Jhonny & Moriarty, John & Palczewski, Jan, 2017. "Bayesian calibration and number of jump components in electricity spot price models," Energy Economics, Elsevier, vol. 65(C), pages 375-388.
    8. Hanfeld, Marc & Schlüter, Stephan, 2016. "Operating a swing option on today's gas markets: How least squares Monte Carlo works and why it is beneficial," FAU Discussion Papers in Economics 10/2016, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    9. Nemat Safarov & Colin Atkinson, 2017. "Natural Gas-Fired Power Plants Valuation And Optimization Under Lévy Copulas And Regime Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-38, February.
    10. J. Lars Kirkby & Shi-Jie Deng, 2019. "Swing Option Pricing By Dynamic Programming With B-Spline Density Projection," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(08), pages 1-53, December.
    11. Nemat Safarov & Colin Atkinson, 2016. "Natural gas-fired power plants valuation and optimisation under Levy copulas and regime-switching," Papers 1607.01207, arXiv.org, revised Jul 2016.
    12. Latini, Luca & Piccirilli, Marco & Vargiolu, Tiziano, 2019. "Mean-reverting no-arbitrage additive models for forward curves in energy markets," Energy Economics, Elsevier, vol. 79(C), pages 157-170.
    13. Benth, Fred Espen & Kiesel, Rüdiger & Nazarova, Anna, 2012. "A critical empirical study of three electricity spot price models," Energy Economics, Elsevier, vol. 34(5), pages 1589-1616.
    14. Christian Laudag'e & Florian Aichinger & Sascha Desmettre, 2023. "A Comparative Study of Factor Models for Different Periods of the Electricity Spot Price Market," Papers 2306.07731, arXiv.org, revised Apr 2024.
    15. Cartea, Álvaro & Williams, Thomas, 2008. "UK gas markets: The market price of risk and applications to multiple interruptible supply contracts," Energy Economics, Elsevier, vol. 30(3), pages 829-846, May.
    16. Benth, Fred Espen & Biegler-König, Richard & Kiesel, Rüdiger, 2013. "An empirical study of the information premium on electricity markets," Energy Economics, Elsevier, vol. 36(C), pages 55-77.
    17. Boonstra, Boris C. & Oosterlee, Cornelis W., 2021. "Valuation of electricity storage contracts using the COS method," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    18. Bannör, Karl & Kiesel, Rüdiger & Nazarova, Anna & Scherer, Matthias, 2016. "Parametric model risk and power plant valuation," Energy Economics, Elsevier, vol. 59(C), pages 423-434.
    19. Larsson, Karl & Nossman, Marcus, 2011. "Jumps and stochastic volatility in oil prices: Time series evidence," Energy Economics, Elsevier, vol. 33(3), pages 504-514, May.
    20. Mo, Jian-Lei & Schleich, Joachim & Zhu, Lei & Fan, Ying, 2015. "Delaying the introduction of emissions trading systems—Implications for power plant investment and operation from a multi-stage decision model," Energy Economics, Elsevier, vol. 52(PB), pages 255-264.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1908.03137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.