IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1609.04199.html
   My bibliography  Save this paper

Entropy and efficiency of the ETF market

Author

Listed:
  • Lucio Maria Calcagnile
  • Fulvio Corsi
  • Stefano Marmi

Abstract

We investigate the relative information efficiency of financial markets by measuring the entropy of the time series of high frequency data. Our tool to measure efficiency is the Shannon entropy, applied to 2-symbol and 3-symbol discretisations of the data. Analysing 1-minute and 5-minute price time series of 55 Exchange Traded Funds traded at the New York Stock Exchange, we develop a methodology to isolate true inefficiencies from other sources of regularities, such as the intraday pattern, the volatility clustering and the microstructure effects. The first two are modelled as multiplicative factors, while the microstructure is modelled as an ARMA noise process. Following an analytical and empirical combined approach, we find a strong relationship between low entropy and high relative tick size and that volatility is responsible for the largest amount of regularity, averaging 62% of the total regularity against 18% of the intraday pattern regularity and 20% of the microstructure.

Suggested Citation

  • Lucio Maria Calcagnile & Fulvio Corsi & Stefano Marmi, 2016. "Entropy and efficiency of the ETF market," Papers 1609.04199, arXiv.org.
  • Handle: RePEc:arx:papers:1609.04199
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1609.04199
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brownlees, C.T. & Gallo, G.M., 2006. "Financial econometric analysis at ultra-high frequency: Data handling concerns," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2232-2245, December.
    2. Giglio, Ricardo & Matsushita, Raul & Figueiredo, Annibal & Gleria, Iram & Da Silva, Sergio, 2008. "Algorithmic complexity theory and the relative efficiency of financial markets," MPRA Paper 8704, University Library of Munich, Germany.
    3. Armin Shmilovici & Yoav Kahiri & Irad Ben-Gal & Shmuel Hauser, 2009. "Measuring the Efficiency of the Intraday Forex Market with a Universal Data Compression Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 33(2), pages 131-154, March.
    4. Oh, Gabjin & Kim, Seunghwan & Eom, Cheoljun, 2007. "Market efficiency in foreign exchange markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 209-212.
    5. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
    6. Wiston Adrian Risso, 2009. "The informational efficiency: the emerging markets versus the developed markets," Applied Economics Letters, Taylor & Francis Journals, vol. 16(5), pages 485-487.
    7. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
    8. Armin Shmilovici & Yael Alon-Brimer & Shmuel Hauser, 2003. "Using a Stochastic Complexity Measure to Check the Efficient Market Hypothesis," Computational Economics, Springer;Society for Computational Economics, vol. 22(2), pages 273-284, October.
    9. Giglio, Ricardo & Matsushita, Raul & Figueiredo, Annibal & Gleria, Iram & Da Silva, Sergio, 2008. "Algorithmic complexity theory and the relative efficiency of financial markets - Updated," MPRA Paper 11150, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucio Maria Calcagnile & Fulvio Corsi & Stefano Marmi, 2020. "Entropy and Efficiency of the ETF Market," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 143-184, January.
    2. Shternshis, Andrey & Mazzarisi, Piero & Marmi, Stefano, 2022. "Measuring market efficiency: The Shannon entropy of high-frequency financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    3. Jean-Yves Gnabo & J�rôme Lahaye & S�bastien Laurent & Christelle Lecourt, 2012. "Do jumps mislead the FX market?," Quantitative Finance, Taylor & Francis Journals, vol. 12(10), pages 1521-1532, October.
    4. Kim Christensen & Ulrich Hounyo & Mark Podolskij, 2017. "Is the diurnal pattern sufficient to explain the intraday variation in volatility? A nonparametric assessment," CREATES Research Papers 2017-30, Department of Economics and Business Economics, Aarhus University.
    5. Deniz Erdemlioglu & Sébastien Laurent & Christopher J. Neely, 2013. "Econometric modeling of exchange rate volatility and jumps," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 16, pages 373-427, Edward Elgar Publishing.
    6. Giacomo Bormetti & Lucio Maria Calcagnile & Michele Treccani & Fulvio Corsi & Stefano Marmi & Fabrizio Lillo, 2015. "Modelling systemic price cojumps with Hawkes factor models," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1137-1156, July.
    7. Kim Christensen & Ulrich Hounyo & Mark Podolskij, 2016. "Testing for heteroscedasticity in jumpy and noisy high-frequency data: A resampling approach," CREATES Research Papers 2016-27, Department of Economics and Business Economics, Aarhus University.
    8. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2010. "Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1891-1901.
    9. Brandouy, Olivier & Delahaye, Jean-Paul & Ma, Lin & Zenil, Hector, 2014. "Algorithmic complexity of financial motions," Research in International Business and Finance, Elsevier, vol. 30(C), pages 336-347.
    10. Massimiliano Caporin & Angelo Ranaldo & Gabriel G. Velo, 2015. "Precious metals under the microscope: a high-frequency analysis," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 743-759, May.
    11. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    12. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    13. Ortiz-Cruz, Alejandro & Rodriguez, Eduardo & Ibarra-Valdez, Carlos & Alvarez-Ramirez, Jose, 2012. "Efficiency of crude oil markets: Evidences from informational entropy analysis," Energy Policy, Elsevier, vol. 41(C), pages 365-373.
    14. Andrey Shternshis & Piero Mazzarisi & Stefano Marmi, 2022. "Efficiency of the Moscow Stock Exchange before 2022," Papers 2207.10476, arXiv.org, revised Jul 2022.
    15. Barndorff-Nielsen, Ole E. & Graversen, Svend Erik & Jacod, Jean & Shephard, Neil, 2006. "Limit Theorems For Bipower Variation In Financial Econometrics," Econometric Theory, Cambridge University Press, vol. 22(4), pages 677-719, August.
    16. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
    17. Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Annals of Economics and Statistics, GENES, issue 123-124, pages 135-174.
    18. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S. & Grose, Simone D., 2012. "Probabilistic forecasts of volatility and its risk premia," Journal of Econometrics, Elsevier, vol. 171(2), pages 217-236.
    19. Juho Kanniainen & Martin Magris, 2018. "Option market (in)efficiency and implied volatility dynamics after return jumps," Papers 1810.12200, arXiv.org.
    20. Prosper Dovonon & Sílvia Gonçalves & Ulrich Hounyo & Nour Meddahi, 2019. "Bootstrapping High-Frequency Jump Tests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 793-803, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1609.04199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.