IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v61y2015is2ps269-s285.html
   My bibliography  Save this article

Futures hedging with Markov switching vector error correction FIEGARCH and FIAPARCH

Author

Listed:
  • Dark, Jonathan

Abstract

Markov switching vector error correction asymmetric long memory volatility models with fat tailed innovations are proposed. Bivariate two state versions of the models are applied to a futures hedge of the S&P500. Regime switches occur between high and low cost of carry states via changes in the error correction term or basis. Regime identification is therefore dominated by switches in the mean, not volatility. Relative to a number of alternatives, the proposed models provide superior out of sample forecasts of the covariance matrix particularly for horizons greater than 10days ahead. When hedging, Markov switching with long memory improves the tail risk of hedged returns beyond 10day horizons, however there is mixed support for models with volatility asymmetries. These findings have important implications for the development of multivariate models and other applications including portfolio management, spread option pricing and arbitrage.

Suggested Citation

  • Dark, Jonathan, 2015. "Futures hedging with Markov switching vector error correction FIEGARCH and FIAPARCH," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 269-285.
  • Handle: RePEc:eee:jbfina:v:61:y:2015:i:s2:p:s269-s285
    DOI: 10.1016/j.jbankfin.2015.08.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378426615002289
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbankfin.2015.08.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:hal:journl:peer-00815564 is not listed on IDEAS
    2. Søren Johansen & Morten Ørregaard Nielsen, 2012. "Likelihood Inference for a Fractionally Cointegrated Vector Autoregressive Model," Econometrica, Econometric Society, vol. 80(6), pages 2667-2732, November.
    3. Sébastien Laurent & Jeroen V. K. Rombouts & Francesco Violante, 2012. "On the forecasting accuracy of multivariate GARCH models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 934-955, September.
    4. Kristensen, Dennis & Rahbek, Anders, 2010. "Likelihood-based inference for cointegration with nonlinear error-correction," Journal of Econometrics, Elsevier, vol. 158(1), pages 78-94, September.
    5. Brunetti, Celso & Gilbert, Christopher L., 2000. "Bivariate FIGARCH and fractional cointegration," Journal of Empirical Finance, Elsevier, vol. 7(5), pages 509-530, December.
    6. Donald Lien & Yiu Kuen Tse, 1999. "Fractional cointegration and futures hedging," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 19(4), pages 457-474, June.
    7. Da‐Hsiang Donald Lien, 1996. "The effect of the cointegration relationship on futures hedging: A note," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 16(7), pages 773-780, October.
    8. Haldrup, Niels & Nielsen, Morten Orregaard, 2006. "A regime switching long memory model for electricity prices," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 349-376.
    9. Baillie, Richard T & Bollerslev, Tim, 1994. "Cointegration, Fractional Cointegration, and Exchange Rate Dynamics," Journal of Finance, American Finance Association, vol. 49(2), pages 737-745, June.
    10. Sepideh Dolatabadi & Morten Ørregaard Nielsen & Ke Xu, 2015. "A Fractionally Cointegrated VAR Analysis of Price Discovery in Commodity Futures Markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 35(4), pages 339-356, April.
    11. Annastiina Silvennoinen & Timo Teräsvirta, 2009. "Modeling Multivariate Autoregressive Conditional Heteroskedasticity with the Double Smooth Transition Conditional Correlation GARCH Model," Journal of Financial Econometrics, Oxford University Press, vol. 7(4), pages 373-411, Fall.
    12. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    13. Lien, Donald & Yang, Li, 2008. "Asymmetric effect of basis on dynamic futures hedging: Empirical evidence from commodity markets," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 187-198, February.
    14. Franc Klaassen, 2002. "Improving GARCH volatility forecasts with regime-switching GARCH," Empirical Economics, Springer, vol. 27(2), pages 363-394.
    15. Andreas Noack Jensen & Morten Ørregaard Nielsen, 2014. "A Fast Fractional Difference Algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(5), pages 428-436, August.
    16. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 261-268, July.
    17. Monica Billio & Massimiliano Caporin, 2005. "Multivariate Markov switching dynamic conditional correlation GARCH representations for contagion analysis," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 14(2), pages 145-161, November.
    18. Morana, Claudio, 2007. "Multivariate modelling of long memory processes with common components," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 919-934, October.
    19. Barndorff-Nielsen, Ole E. & Hansen, Peter Reinhard & Lunde, Asger & Shephard, Neil, 2011. "Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," Journal of Econometrics, Elsevier, vol. 162(2), pages 149-169, June.
    20. Zhongjun Qu, 2011. "A Test Against Spurious Long Memory," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 423-438, July.
    21. Cheung, Yin-Wong & Erlandsson, Ulf G., 2005. "Exchange Rates and Markov Switching Dynamics," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 314-320, July.
    22. Ederington, Louis H, 1979. "The Hedging Performance of the New Futures Markets," Journal of Finance, American Finance Association, vol. 34(1), pages 157-170, March.
    23. Jochmann Markus & Koop Gary, 2015. "Regime-switching cointegration," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(1), pages 35-48, February.
    24. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    25. McAleer, Michael & Medeiros, Marcelo C., 2008. "A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries," Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
    26. Dark, Jonathan, 2007. "Basis Convergence and Long Memory in Volatility When Dynamic Hedging with Futures," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 42(4), pages 1021-1040, December.
    27. Marcucci Juri, 2005. "Forecasting Stock Market Volatility with Regime-Switching GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(4), pages 1-55, December.
    28. Vicente Meneu & Hipòlit Torró, 2003. "Asymmetric covariance in spot‐futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 23(11), pages 1019-1046, November.
    29. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    30. Baillie, Richard T. & Morana, Claudio, 2009. "Modelling long memory and structural breaks in conditional variances: An adaptive FIGARCH approach," Journal of Economic Dynamics and Control, Elsevier, vol. 33(8), pages 1577-1592, August.
    31. Bandi, Federico M. & Russell, Jeffrey R., 2006. "Separating microstructure noise from volatility," Journal of Financial Economics, Elsevier, vol. 79(3), pages 655-692, March.
    32. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    33. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    34. Zacharias Psaradakis & Nicola Spagnolo, 2003. "On The Determination Of The Number Of Regimes In Markov‐Switching Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(2), pages 237-252, March.
    35. Hsiang-Tai Lee & Jonathan Yoder, 2007. "A bivariate Markov regime switching GARCH approach to estimate time varying minimum variance hedge ratios," Applied Economics, Taylor & Francis Journals, vol. 39(10), pages 1253-1265.
    36. Bandi, Federico M. & Russell, Jeffrey R., 2011. "Market microstructure noise, integrated variance estimators, and the accuracy of asymptotic approximations," Journal of Econometrics, Elsevier, vol. 160(1), pages 145-159, January.
    37. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
    38. Zacharias Psaradakis & Martin Sola & Fabio Spagnolo, 2004. "On Markov error-correction models, with an application to stock prices and dividends," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(1), pages 69-88.
    39. Tse, Y K & Tsui, Albert K C, 2002. "A Multivariate Generalized Autoregressive Conditional Heteroscedasticity Model with Time-Varying Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 351-362, July.
    40. Eduardo Rossi & Paolo Santucci de Magistris, 2013. "A No‐Arbitrage Fractional Cointegration Model for Futures and Spot Daily Ranges," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 33(1), pages 77-102, January.
    41. Morana, Claudio & Beltratti, Andrea, 2004. "Structural change and long-range dependence in volatility of exchange rates: either, neither or both?," Journal of Empirical Finance, Elsevier, vol. 11(5), pages 629-658, December.
    42. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    43. Charles T. Howard & Louis J. D'Antonio, 1991. "Multiperiod hedging using futures: A risk minimization approach in the presence of autocorrelation," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 11(6), pages 697-710, December.
    44. Lee, Tae-Hwy, 1994. "Spread and volatility in spot and forward exchange rates," Journal of International Money and Finance, Elsevier, vol. 13(3), pages 375-383, June.
    45. Chris Brooks & Olan T. Henry & Gita Persand, 2002. "The Effect of Asymmetries on Optimal Hedge Ratios," The Journal of Business, University of Chicago Press, vol. 75(2), pages 333-352, April.
    46. Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.
    47. Pelletier, Denis, 2006. "Regime switching for dynamic correlations," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 445-473.
    48. Tim Bollerslev & Julia Litvinova & George Tauchen, 2006. "Leverage and Volatility Feedback Effects in High-Frequency Data," Journal of Financial Econometrics, Oxford University Press, vol. 4(3), pages 353-384.
    49. Kroner, Kenneth F. & Sultan, Jahangir, 1993. "Time-Varying Distributions and Dynamic Hedging with Foreign Currency Futures," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(4), pages 535-551, December.
    50. Donald Lien & Li Yang, 2006. "Spot‐futures spread, time‐varying correlation, and hedging with currency futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 26(10), pages 1019-1038, October.
    51. Ng, Victor K & Pirrong, Stephen Craig, 1994. "Fundamentals and Volatility: Storage, Spreads, and the Dynamics of Metals Prices," The Journal of Business, University of Chicago Press, vol. 67(2), pages 203-230, April.
    52. Lee, Hsiang-Tai, 2009. "Optimal futures hedging under jump switching dynamics," Journal of Empirical Finance, Elsevier, vol. 16(3), pages 446-456, June.
    53. Haldrup Niels & Nielsen Morten Ø., 2006. "Directional Congestion and Regime Switching in a Long Memory Model for Electricity Prices," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(3), pages 1-24, September.
    54. Zhong, Maosen & Darrat, Ali F. & Otero, Rafael, 2004. "Price discovery and volatility spillovers in index futures markets: Some evidence from Mexico," Journal of Banking & Finance, Elsevier, vol. 28(12), pages 3037-3054, December.
    55. Chen, Sheng-Syan & Lee, Cheng-few & Shrestha, Keshab, 2003. "Futures hedge ratios: a review," The Quarterly Review of Economics and Finance, Elsevier, vol. 43(3), pages 433-465.
    56. Dark, Jonathan, 2012. "Will tighter futures price limits decrease hedge effectiveness?," Journal of Banking & Finance, Elsevier, vol. 36(10), pages 2717-2728.
    57. Alizadeh, Amir H. & Nomikos, Nikos K. & Pouliasis, Panos K., 2008. "A Markov regime switching approach for hedging energy commodities," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1970-1983, September.
    58. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 280-283, July.
    59. Hsiang-Tai Lee, 2011. "Regime switching fractional cointegration and futures hedging," Applied Financial Economics, Taylor & Francis Journals, vol. 21(15), pages 1145-1157.
    60. Peter Reinhard Hansen & Asger Lunde, 2005. "A Realized Variance for the Whole Day Based on Intermittent High-Frequency Data," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 525-554.
    61. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    62. Donald Lien & Xiangdong Luo, 1994. "Multiperiod hedging in the presence of conditional heteroskedasticity," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 14(8), pages 927-955, December.
    63. Y. K. Tse, 1998. "The conditional heteroscedasticity of the yen-dollar exchange rate," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(1), pages 49-55.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Xing & Shen, Xilin & Li, Yanyan & Gong, Xue, 2023. "Selective hedging strategies for crude oil futures based on market state expectations," Global Finance Journal, Elsevier, vol. 57(C).
    2. Salami, Monsurat Ayojimi & Tanrıvermiş, Harun & Tanrıvermiş, Yesim, 2024. "Influence of Ukraine invasion by Russia on Turkish markets," The Journal of Economic Asymmetries, Elsevier, vol. 29(C).
    3. Leonardo Badea & Daniel Ştefan Armeanu & Iulian Panait & Ştefan Cristian Gherghina, 2019. "A Markov Regime Switching Approach towards Assessing Resilience of Romanian Collective Investment Undertakings," Sustainability, MDPI, vol. 11(5), pages 1-24, March.
    4. Dark, Jonathan, 2024. "An adaptive long memory conditional correlation model," Journal of Empirical Finance, Elsevier, vol. 75(C).
    5. Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2018. "Markov switching GARCH models for Bayesian hedging on energy futures markets," Energy Economics, Elsevier, vol. 70(C), pages 545-562.
    6. Stavroula P. Fameliti & Vasiliki D. Skintzi, 2020. "Predictive ability and economic gains from volatility forecast combinations," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 200-219, March.
    7. Donald Lien & Hsiang‐Tai Lee & Her‐Jiun Sheu, 2018. "Hedging systematic risk in the commodity market with a regime‐switching multivariate rotated generalized autoregressive conditional heteroskedasticity model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(12), pages 1514-1532, December.
    8. Hsiang‐Tai Lee, 2024. "Riemannian‐geometric regime‐switching covariance hedging," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(6), pages 1003-1054, June.
    9. Wen-Chung Hsu & Hsiang-Tai Lee, 2018. "Cross Hedging Stock Sector Risk with Index Futures by Considering the Global Equity Systematic Risk," IJFS, MDPI, vol. 6(2), pages 1-17, April.
    10. Hsiang‐Tai Lee, 2022. "A Markov regime‐switching Cholesky GARCH model for directly estimating the dynamic of optimal hedge ratio," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(3), pages 389-412, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dark, Jonathan, 2018. "Multivariate models with long memory dependence in conditional correlation and volatility," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 162-180.
    2. Su, EnDer, 2017. "Stock index hedging using a trend and volatility regime-switching model involving hedging cost," International Review of Economics & Finance, Elsevier, vol. 47(C), pages 233-254.
    3. Dark, Jonathan, 2024. "An adaptive long memory conditional correlation model," Journal of Empirical Finance, Elsevier, vol. 75(C).
    4. Gao, Guangyuan & Ho, Kin-Yip & Shi, Yanlin, 2020. "Long memory or regime switching in volatility? Evidence from high-frequency returns on the U.S. stock indices," Pacific-Basin Finance Journal, Elsevier, vol. 61(C).
    5. Su, EnDer, 2013. "Stock index hedge using trend and volatility regime switch model considering hedging cost," MPRA Paper 49190, University Library of Munich, Germany.
    6. Xu, Jiawen & Perron, Pierre, 2014. "Forecasting return volatility: Level shifts with varying jump probability and mean reversion," International Journal of Forecasting, Elsevier, vol. 30(3), pages 449-463.
    7. Yudong Wang & Chongfeng Wu & Li Yang, 2015. "Hedging with Futures: Does Anything Beat the Naïve Hedging Strategy?," Management Science, INFORMS, vol. 61(12), pages 2870-2889, December.
    8. Jonathan Dark, 2004. "Long term hedging of the Australian All Ordinaries Index using a bivariate error correction FIGARCH model," Monash Econometrics and Business Statistics Working Papers 7/04, Monash University, Department of Econometrics and Business Statistics.
    9. David E. Allen & Michael McAleer & Marcel Scharth, 2009. "Realized Volatility Risk," CIRJE F-Series CIRJE-F-693, CIRJE, Faculty of Economics, University of Tokyo.
    10. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    11. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    12. Adnen Ben Nasr & Ahdi Noomen Ajmi & Rangan Gupta, 2014. "Modelling the volatility of the Dow Jones Islamic Market World Index using a fractionally integrated time-varying GARCH (FITVGARCH) model," Applied Financial Economics, Taylor & Francis Journals, vol. 24(14), pages 993-1004, July.
    13. McAleer, Michael & Medeiros, Marcelo C., 2008. "A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries," Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
    14. Thomas Conlon & John Cotter & Ramazan Gençay, 2016. "Commodity futures hedging, risk aversion and the hedging horizon," The European Journal of Finance, Taylor & Francis Journals, vol. 22(15), pages 1534-1560, December.
    15. Janus, Paweł & Koopman, Siem Jan & Lucas, André, 2014. "Long memory dynamics for multivariate dependence under heavy tails," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 187-206.
    16. Lee, Hsiang-Tai, 2010. "Regime switching correlation hedging," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2728-2741, November.
    17. Rodríguez, Gabriel, 2017. "Modeling Latin-American stock and Forex markets volatility: Empirical application of a model with random level shifts and genuine long memory," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 393-420.
    18. Ubukata, Masato & Watanabe, Toshiaki, 2015. "Evaluating the performance of futures hedging using multivariate realized volatility," Journal of the Japanese and International Economies, Elsevier, vol. 38(C), pages 148-171.
    19. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    20. Gabriel Rodríguez & Junior A. Ojeda Cunya & José Carlos Gonzáles Tanaka, 2019. "An empirical note about estimation and forecasting Latin American Forex returns volatility: the role of long memory and random level shifts components," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 18(2), pages 107-123, June.

    More about this item

    Keywords

    Dynamic futures hedging; Markov switching; Cointegration; Long memory; Volatility asymmetry;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:61:y:2015:i:s2:p:s269-s285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.