IDEAS home Printed from https://ideas.repec.org/a/oup/jfinec/v14y2016i4p668-692..html
   My bibliography  Save this article

Component-wise Representations of Long-memory Models and Volatility Prediction

Author

Listed:
  • Tommaso Proietti

Abstract

Extracting and forecasting the volatility of financial markets is an important empirical problem. The article provides a time series characterization of the volatility components arising when the volatility process is fractionally integrated, through a generalization of the Beveridge–Nelson decomposition, and proposes a new integrated moving average (MA) model, formulated in terms of the fractional lag operator, the FLagIMA model, which allows the series to be decomposed as the sum of a fractional noise and a white noise component. We provide an assessment of the predictive performance of the FLagIMA model in comparison with other popular predictors and two other rival specifications, the fractionally integrated first-order MA model, and a fractional equal root integrated MA model. For statistical inference we show that, under mild regularity conditions, the Whittle pseudo-maximum likelihood estimator of the model parameters is consistent and asymptotically normal, also in the nonstationary case.

Suggested Citation

  • Tommaso Proietti, 2016. "Component-wise Representations of Long-memory Models and Volatility Prediction," Journal of Financial Econometrics, Oxford University Press, vol. 14(4), pages 668-692.
  • Handle: RePEc:oup:jfinec:v:14:y:2016:i:4:p:668-692.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/jjfinec/nbw004
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Engle, Robert F. (ed.), 1995. "ARCH: Selected Readings," OUP Catalogue, Oxford University Press, number 9780198774327.
    2. Johansen, SØren, 2008. "A Representation Theory For A Class Of Vector Autoregressive Models For Fractional Processes," Econometric Theory, Cambridge University Press, vol. 24(3), pages 651-676, June.
    3. Granger, Clive W J, 1986. "Developments in the Study of Cointegrated Economic Variables," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 48(3), pages 213-228, August.
    4. Shephard, Neil (ed.), 2005. "Stochastic Volatility: Selected Readings," OUP Catalogue, Oxford University Press, number 9780199257201.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tobias Hartl & Rolf Tschernig & Enzo Weber, 2020. "Fractional trends in unobserved components models," Papers 2005.03988, arXiv.org, revised May 2020.
    2. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
    3. Federico Maddanu, 2023. "Forecasting highly persistent time series with bounded spectrum processes," Statistical Papers, Springer, vol. 64(1), pages 285-319, February.
    4. Taylor, Nick, 2017. "Realised variance forecasting under Box-Cox transformations," International Journal of Forecasting, Elsevier, vol. 33(4), pages 770-785.
    5. Proietti, Tommaso & Maddanu, Federico, 2024. "Modelling cycles in climate series: The fractional sinusoidal waveform process," Journal of Econometrics, Elsevier, vol. 239(1).
    6. Uwe Hassler & Marc-Oliver Pohle, 2019. "Forecasting under Long Memory and Nonstationarity," Papers 1910.08202, arXiv.org.
    7. Taylor, Nick, 2017. "Timing strategy performance in the crude oil futures market," Energy Economics, Elsevier, vol. 66(C), pages 480-492.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Proietti, Tommaso, 2014. "Exponential Smoothing, Long Memory and Volatility Prediction," MPRA Paper 57230, University Library of Munich, Germany.
    2. Ataurima Arellano, Miguel & Rodríguez, Gabriel, 2020. "Empirical modeling of high-income and emerging stock and Forex market return volatility using Markov-switching GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    3. Tobias Hartl & Roland Weigand, 2018. "Multivariate Fractional Components Analysis," Papers 1812.09149, arXiv.org, revised Jan 2019.
    4. Alia Afzal & Philipp Sibbertsen, 2021. "Modeling fractional cointegration between high and low stock prices in Asian countries," Empirical Economics, Springer, vol. 60(2), pages 661-682, February.
    5. Federico Carlini & Paolo Santucci de Magistris, 2019. "Resuscitating the co-fractional model of Granger (1986)," Discussion Papers 19/01, University of Nottingham, Granger Centre for Time Series Econometrics.
    6. de Truchis, Gilles, 2013. "Approximate Whittle analysis of fractional cointegration and the stock market synchronization issue," Economic Modelling, Elsevier, vol. 34(C), pages 98-105.
    7. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    8. Wang, Joanna J.J. & Chan, Jennifer S.K. & Choy, S.T. Boris, 2011. "Stochastic volatility models with leverage and heavy-tailed distributions: A Bayesian approach using scale mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 852-862, January.
    9. Katarzyna Łasak & Carlos Velasco, 2015. "Fractional Cointegration Rank Estimation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(2), pages 241-254, April.
    10. Federico Carlini & Paolo Santucci de Magistris, 2019. "On the Identification of Fractionally Cointegrated VAR Models With the Condition," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 134-146, January.
    11. Yuta Kurose & Yasuhiro Omori, 2012. "Bayesian Analysis of Time-Varying Quantiles Using a Smoothing Spline," CIRJE F-Series CIRJE-F-845, CIRJE, Faculty of Economics, University of Tokyo.
    12. Bent Jesper Christensen & Nabanita Datta Gupta & Paolo Santucci de Magistris, 2021. "Measuring the impact of clean energy production on CO2 abatement in Denmark: Upper bound estimation and forecasting," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 118-149, January.
    13. Lu, Yang K. & Perron, Pierre, 2010. "Modeling and forecasting stock return volatility using a random level shift model," Journal of Empirical Finance, Elsevier, vol. 17(1), pages 138-156, January.
    14. Zhongjun Qu & Pierre Perron, 2008. "A Stochastic Volatility Model with Random Level Shifts: Theory and Applications to S&P 500 and NASDAQ Return Indices," Boston University - Department of Economics - Working Papers Series wp2008-007, Boston University - Department of Economics.
    15. Bollerslev, Tim & Osterrieder, Daniela & Sizova, Natalia & Tauchen, George, 2013. "Risk and return: Long-run relations, fractional cointegration, and return predictability," Journal of Financial Economics, Elsevier, vol. 108(2), pages 409-424.
    16. Eduardo Rossi & Paolo Santucci de Magistris, 2009. "A No Arbitrage Fractional Cointegration Analysis Of The Range Based Volatility," CREATES Research Papers 2009-31, Department of Economics and Business Economics, Aarhus University.
    17. Lengua Lafosse, Patricia & Rodríguez, Gabriel, 2018. "An empirical application of a stochastic volatility model with GH skew Student's t-distribution to the volatility of Latin-American stock returns," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 155-173.
    18. Haldrup, Niels & Nielsen, Frank S. & Nielsen, Morten Ørregaard, 2010. "A vector autoregressive model for electricity prices subject to long memory and regime switching," Energy Economics, Elsevier, vol. 32(5), pages 1044-1058, September.
    19. Katarzyna Lasak, 2008. "Maximum likelihood estimation of fractionally cointegrated systems," CREATES Research Papers 2008-53, Department of Economics and Business Economics, Aarhus University.
    20. Ranaldo, Angelo & de Magistris, Paolo Santucci, 2022. "Liquidity in the global currency market," Journal of Financial Economics, Elsevier, vol. 146(3), pages 859-883.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:14:y:2016:i:4:p:668-692.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/sofieea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.