IDEAS home Printed from https://ideas.repec.org/p/ris/smuesw/2018_008.html
   My bibliography  Save this paper

A Posterior-Based Wald-Type Statistic for Hypothesis Testing

Author

Listed:
  • Li, Yong

    (Renmin University of China)

  • Liu, Xiaobin

    (Zhejiang University)

  • Zeng, Tao

    (Zhejiang University)

  • Yu, Jun

    (SMU School of Economics)

Abstract

A new Wald-type statistic is proposed for hypothesis testing based on Bayesian posterior distributions. The new statistic can be explained as a posterior version of Wald test and have several nice properties. First, it is well-defi ned under improper prior distributions. Second, it avoids Jeffreys-Lindley's paradox. Third, under the null hypothesis and repeated sampling, it follows a x2 distribution asymptotically, offering an asymptotically pivotal test. Fourth, it only requires inverting the posterior covariance for the parameters of interest. Fifth and perhaps most importantly, when a random sample from the posterior distribution (such as an MCMC output) is available, the proposed statistic can be easily obtained as a by-product of posterior simulation. In addition, the numerical standard error of the estimated proposed statistic can be computed based on the random sample. The finite sample performance of the statistic is examined in Monte Carlo studies. The method is applied to two latent variable models used in microeconometrics and financial econometrics.

Suggested Citation

  • Li, Yong & Liu, Xiaobin & Zeng, Tao & Yu, Jun, 2018. "A Posterior-Based Wald-Type Statistic for Hypothesis Testing," Economics and Statistics Working Papers 8-2018, Singapore Management University, School of Economics.
  • Handle: RePEc:ris:smuesw:2018_008
    as

    Download full text from publisher

    File URL: http://ink.library.smu.edu.sg/soe_research/2172/
    File Function: Full text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Xiaohong Chen & Timothy Christensen & Keith O’Hara & Elie Tamer, 2016. "MCMC Confidence sets for Identified Sets," Cowles Foundation Discussion Papers 2037R, Cowles Foundation for Research in Economics, Yale University, revised Jul 2016.
    2. Han C. & Carlin B. P., 2001. "Markov Chain Monte Carlo Methods for Computing Bayes Factors: A Comparative Review," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1122-1132, September.
    3. Li, Yong & Wang, Nianling & Yu, Jun, 2023. "Improved marginal likelihood estimation via power posteriors and importance sampling," Journal of Econometrics, Elsevier, vol. 234(1), pages 28-52.
    4. Steven Stern, 1997. "Simulation-Based Estimation," Journal of Economic Literature, American Economic Association, vol. 35(4), pages 2006-2039, December.
    5. White,Halbert, 1996. "Estimation, Inference and Specification Analysis," Cambridge Books, Cambridge University Press, number 9780521574464, September.
    6. Geweke, John & Koop, Gary & van Dijk, Herman (ed.), 2011. "The Oxford Handbook of Bayesian Econometrics," OUP Catalogue, Oxford University Press, number 9780199559084.
    7. Li, Yong & Liu, Xiao-Bin & Yu, Jun, 2015. "A Bayesian chi-squared test for hypothesis testing," Journal of Econometrics, Elsevier, vol. 189(1), pages 54-69.
    8. Chernozhukov, Victor & Hong, Han, 2003. "An MCMC approach to classical estimation," Journal of Econometrics, Elsevier, vol. 115(2), pages 293-346, August.
    9. Mingliang Li, 2006. "High school completion and future youth unemployment: new evidence from High School and Beyond," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 23-53, January.
    10. Newey, Whitney K & West, Kenneth D, 1987. "Hypothesis Testing with Efficient Method of Moments Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 28(3), pages 777-787, October.
    11. Poirier, Dale J., 1997. "A predictive motivation for loss function specification in parametric hypothesis testing," Economics Letters, Elsevier, vol. 56(1), pages 1-3, September.
    12. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    13. Robert M. De Jong & James Davidson, 2000. "Consistency of Kernel Estimators of Heteroscedastic and Autocorrelated Covariance Matrices," Econometrica, Econometric Society, vol. 68(2), pages 407-424, March.
    14. Andrews, Donald W K, 1987. "Consistency in Nonlinear Econometric Models: A Generic Uniform Law of Large Numbers [On Unification of the Asymptotic Theory of Nonlinear Econometric Models]," Econometrica, Econometric Society, vol. 55(6), pages 1465-1471, November.
    15. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    16. Harvey, Andrew C & Shephard, Neil, 1996. "Estimation of an Asymmetric Stochastic Volatility Model for Asset Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 429-434, October.
    17. Skaug, Hans J. & Yu, Jun, 2014. "A flexible and automated likelihood based framework for inference in stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 642-654.
    18. Dale J. Poirier, 1995. "Intermediate Statistics and Econometrics: A Comparative Approach," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262161494, December.
    19. Liao, Yuan & Simoni, Anna, 2019. "Bayesian inference for partially identified smooth convex models," Journal of Econometrics, Elsevier, vol. 211(2), pages 338-360.
    20. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    21. Li, Yong & Zeng, Tao & Yu, Jun, 2014. "A new approach to Bayesian hypothesis testing," Journal of Econometrics, Elsevier, vol. 178(P3), pages 602-612.
    22. Chib S. & Jeliazkov I., 2001. "Marginal Likelihood From the Metropolis-Hastings Output," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 270-281, March.
    23. Li, Yong & Yu, Jun & Zeng, Tao, 2017. "Deviance Information Criterion for Bayesian Model Selection: Justification and Variation," Economics and Statistics Working Papers 5-2017, Singapore Management University, School of Economics.
    24. Qian M. Zhou & Peter X.-K. Song & Mary E. Thompson, 2012. "Information Ratio Test for Model Misspecification in Quasi-Likelihood Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 205-213, March.
    25. Li, Yong & Yu, Jun & Zeng, Tao, 2020. "Deviance information criterion for latent variable models and misspecified models," Journal of Econometrics, Elsevier, vol. 216(2), pages 450-493.
    26. Li, Yong & Yu, Jun, 2012. "Bayesian hypothesis testing in latent variable models," Journal of Econometrics, Elsevier, vol. 166(2), pages 237-246.
    27. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    28. Susumu Imai & Neelam Jain & Andrew Ching, 2009. "Bayesian Estimation of Dynamic Discrete Choice Models," Econometrica, Econometric Society, vol. 77(6), pages 1865-1899, November.
    29. A. Norets & X. Tang, 2014. "Semiparametric Inference in Dynamic Binary Choice Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(3), pages 1229-1262.
    30. Mingliang Li, 2006. "High school completion and future youth unemployment: new evidence from High School and Beyond," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 23-53.
    31. Brendan Kline & Elie Tamer, 2016. "Bayesian inference in a class of partially identified models," Quantitative Economics, Econometric Society, vol. 7(2), pages 329-366, July.
    32. Andriy Norets & Xun Tang, 2010. "Semiparametric Inference in Dynamic Binary Choice Models, Second Version," PIER Working Paper Archive 12-017, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 17 Apr 2012.
    33. Li, Yong & Yu, Jun & Zeng, Tao, 2018. "Integrated Deviance Information Criterion for Latent Variable Models," Economics and Statistics Working Papers 6-2018, Singapore Management University, School of Economics.
    34. N. Friel & A. N. Pettitt, 2008. "Marginal likelihood estimation via power posteriors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(3), pages 589-607, July.
    35. Engle, Robert F., 1984. "Wald, likelihood ratio, and Lagrange multiplier tests in econometrics," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 13, pages 775-826, Elsevier.
    36. Hyungsik Roger Moon & Frank Schorfheide, 2012. "Bayesian and Frequentist Inference in Partially Identified Models," Econometrica, Econometric Society, vol. 80(2), pages 755-782, March.
    37. José M. Bernardo & Raúl Rueda, 2002. "Bayesian Hypothesis Testing: a Reference Approach," International Statistical Review, International Statistical Institute, vol. 70(3), pages 351-372, December.
    38. Yacine Aït-Sahalia & Jianqing Fan & Roger J. A. Laeven & Christina Dan Wang & Xiye Yang, 2017. "Estimation of the Continuous and Discontinuous Leverage Effects," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1744-1758, October.
    39. Andriy Norets, 2009. "Inference in Dynamic Discrete Choice Models With Serially orrelated Unobserved State Variables," Econometrica, Econometric Society, vol. 77(5), pages 1665-1682, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baruník, Jozef & Ellington, Michael, 2024. "Persistence in financial connectedness and systemic risk," European Journal of Operational Research, Elsevier, vol. 314(1), pages 393-407.
    2. Kline, Brendan, 2024. "Classical p-values and the Bayesian posterior probability that the hypothesis is approximately true," Journal of Econometrics, Elsevier, vol. 240(1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong Li & Xiaobin Liu & Jun Yu & Tao Zeng, 2018. "A New Wald Test for Hypothesis Testing Based on MCMC outputs," Papers 1801.00973, arXiv.org.
    2. Li, Yong & Liu, Xiao-Bin & Yu, Jun, 2015. "A Bayesian chi-squared test for hypothesis testing," Journal of Econometrics, Elsevier, vol. 189(1), pages 54-69.
    3. Li, Yong & Yu, Jun & Zeng, Tao, 2020. "Deviance information criterion for latent variable models and misspecified models," Journal of Econometrics, Elsevier, vol. 216(2), pages 450-493.
    4. Doğan, Osman & Taşpınar, Süleyman & Bera, Anil K., 2021. "A Bayesian robust chi-squared test for testing simple hypotheses," Journal of Econometrics, Elsevier, vol. 222(2), pages 933-958.
    5. Li, Yong & Yu, Jun & Zeng, Tao, 2018. "Specification tests based on MCMC output," Journal of Econometrics, Elsevier, vol. 207(1), pages 237-260.
    6. Norets, Andriy & Shimizu, Kenichi, 2024. "Semiparametric Bayesian estimation of dynamic discrete choice models," Journal of Econometrics, Elsevier, vol. 238(2).
    7. Li, Yong & Zeng, Tao & Yu, Jun, 2014. "A new approach to Bayesian hypothesis testing," Journal of Econometrics, Elsevier, vol. 178(P3), pages 602-612.
    8. Li, Yong & Yu, Jun & Zeng, Tao, 2018. "Integrated Deviance Information Criterion for Latent Variable Models," Economics and Statistics Working Papers 6-2018, Singapore Management University, School of Economics.
    9. Raffaella Giacomini & Toru Kitagawa & Alessio Volpicella, 2022. "Uncertain identification," Quantitative Economics, Econometric Society, vol. 13(1), pages 95-123, January.
    10. Li, Yong & Yu, Jun, 2012. "Bayesian hypothesis testing in latent variable models," Journal of Econometrics, Elsevier, vol. 166(2), pages 237-246.
    11. Jean-Pierre Florens & Anna Simoni, 2021. "Revisiting Identification Concepts in Bayesian Analysis," Annals of Economics and Statistics, GENES, issue 144, pages 1-38.
    12. Raffaella Giacomini & Toru Kitagawa, 2021. "Robust Bayesian Inference for Set‐Identified Models," Econometrica, Econometric Society, vol. 89(4), pages 1519-1556, July.
    13. Francesca Molinari, 2020. "Microeconometrics with Partial Identi?cation," CeMMAP working papers CWP15/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    14. de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019. "Smoothed GMM for quantile models," Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.
    15. Xiaohong Chen & Timothy M. Christensen & Elie Tamer, 2018. "Monte Carlo Confidence Sets for Identified Sets," Econometrica, Econometric Society, vol. 86(6), pages 1965-2018, November.
    16. Kim, Jae-Young, 2014. "An alternative quasi likelihood approach, Bayesian analysis and data-based inference for model specification," Journal of Econometrics, Elsevier, vol. 178(P1), pages 132-145.
    17. Jiang, Wenxin, 2017. "On limiting distribution of quasi-posteriors under partial identification," Econometrics and Statistics, Elsevier, vol. 3(C), pages 60-72.
    18. Raffaella Giacomini & Toru Kitagawa & Harald Uhlig, 2019. "Estimation Under Ambiguity," CeMMAP working papers CWP24/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    19. Ye Yang & Osman Dogan & Suleyman Taspinar & Fei Jin, 2023. "A Review of Cross-Sectional Matrix Exponential Spatial Models," Papers 2311.14813, arXiv.org.
    20. Emanuele Bacchiocchi & Toru Kitagawa, 2020. "Locally- but not globally-identified SVARs," CeMMAP working papers CWP40/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

    More about this item

    Keywords

    Decision theory; Hypothesis testing; Latent variable models; Posterior simulation; Wald test.;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:smuesw:2018_008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Cheong Pei Qi (email available below). General contact details of provider: https://edirc.repec.org/data/sesmusg.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.