Forecasting the value-at-risk of Chinese stock market using the HARQ model and extreme value theory
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2018.02.033
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Giot, Pierre & Laurent, Sebastien, 2004.
"Modelling daily Value-at-Risk using realized volatility and ARCH type models,"
Journal of Empirical Finance, Elsevier, vol. 11(3), pages 379-398, June.
- Giot, P. & Laurent, S.F.J.A., 2001. "Modelling daily value-at-risk using realized volatility and arch type models," Research Memorandum 026, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- GIOT, Pierre & LAURENT, Sébastien, 2004. "Modelling daily Value-at-Risk using realized volatility and ARCH type models," LIDAM Reprints CORE 1708, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Pierre Giot & Sébastien Laurent, 2002. "Modelling Daily Value-at-Risk Using Realized Volatility and ARCH Type Models," Computing in Economics and Finance 2002 52, Society for Computational Economics.
- Bertrand Candelon & Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2011.
"Backtesting Value-at-Risk: A GMM Duration-Based Test,"
Journal of Financial Econometrics, Oxford University Press, vol. 9(2), pages 314-343, Spring.
- Gilbert COLLETAZ & Christophe HURLIN & Sessi TOKPAVI, 2008. "Backtesting Value-at-Risk: A GMM Duration-Based Test," LEO Working Papers / DR LEO 266, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
- Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2008. "Backtesting Value-at-Risk : A GMM Duration-based Test," Post-Print halshs-00363165, HAL.
- Candelon, B. & Colletaz, G. & Hurlin, C. & Tokpavi, S., 2009. "Backtesting value-at-risk : a GMM duration-based test," Research Memorandum 062, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- Gilbert COLLETAZ & Christophe HURLIN & Sessi TOKPAVI, 2009. "Backtesting Value-at-Risk: A GMM Duration-Based Test," LEO Working Papers / DR LEO 265, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
- Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2008. "Backtesting Value-at-Risk: A GMM Duration-Based Test," Post-Print halshs-00364793, HAL.
- Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2008. "Backtesting Value-at-Risk : A GMM Duration-based Test," Post-Print halshs-00363168, HAL.
- Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2008. "Backtesting Value-at-Risk: A GMM Duration-Based Test," Post-Print halshs-00364797, HAL.
- Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2008. "Backtesting Value-at-Risk : A GMM Duration-based Test," Post-Print halshs-00363146, HAL.
- Christophe Hurlin & Gilbert Colletaz & Sessi Tokpavi & Bertrand Candelon, 2008. "Backtesting Value-at-Risk: A GMM Duration-Based Test," Working Papers halshs-00329495, HAL.
- Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2008. "Backtesting Value-at-Risk: A GMM Duration-Based-Test," Post-Print halshs-00364796, HAL.
- Pan, Zhiyuan & Liu, Li, 2018. "Forecasting stock return volatility: A comparison between the roles of short-term and long-term leverage effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 168-180.
- Choi, Kyongwook & Yu, Wei-Choun & Zivot, Eric, 2010.
"Long memory versus structural breaks in modeling and forecasting realized volatility,"
Journal of International Money and Finance, Elsevier, vol. 29(5), pages 857-875, September.
- Kyongwook Choi & Wei-Choun Yu & Eric Zivot, 2008. "Long Memory versus Structural Breaks in Modeling and Forecasting Realized Volatility," Working Papers UWEC-2008-20-FC, University of Washington, Department of Economics.
- Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
- Mei, Dexiang & Liu, Jing & Ma, Feng & Chen, Wang, 2017. "Forecasting stock market volatility: Do realized skewness and kurtosis help?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 153-159.
- Ole E. Barndorff‐Nielsen & Neil Shephard, 2002.
"Econometric analysis of realized volatility and its use in estimating stochastic volatility models,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
- Ole E. Barndorff-Nielsen & Neil Shephard, 2000. "Econometric analysis of realised volatility and its use in estimating stochastic volatility models," Economics Papers 2001-W4, Economics Group, Nuffield College, University of Oxford, revised 05 Jul 2001.
- Neil Shephard & Ole E. Barndorff-Nielsen & University of Aarhus, 2001. "Econometric Analysis of Realised Volatility and Its Use in Estimating Stochastic Volatility Models," Economics Series Working Papers 71, University of Oxford, Department of Economics.
- Liu, Zhicao & Ye, Yong & Ma, Feng & Liu, Jing, 2017. "Can economic policy uncertainty help to forecast the volatility: A multifractal perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 181-188.
- Petroni, Filippo & Serva, Maurizio, 2016. "Observability of market daily volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 838-842.
- Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2016.
"Exploiting the errors: A simple approach for improved volatility forecasting,"
Journal of Econometrics, Elsevier, vol. 192(1), pages 1-18.
- Tim Bollerslev & Andrew J. Patton & Rogier Quaedvlieg, 2015. "Exploiting the Errors: A Simple Approach for Improved Volatility Forecasting," CREATES Research Papers 2015-14, Department of Economics and Business Economics, Aarhus University.
- Lahmiri, Salim, 2017. "On fractality and chaos in Moroccan family business stock returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 29-39.
- Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
- Andrew J. Patton & Kevin Sheppard, 2015. "Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility," The Review of Economics and Statistics, MIT Press, vol. 97(3), pages 683-697, July.
- Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Econometric Analysis of Realized Covariation: High Frequency Based Covariance, Regression, and Correlation in Financial Economics," Econometrica, Econometric Society, vol. 72(3), pages 885-925, May.
- Chen, Rongda & Li, Cong & Wang, Weijin & Wang, Ze, 2014. "Empirical analysis on future-cash arbitrage risk with portfolio VaR," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 210-216.
- Jung, R.C. & Maderitsch, R., 2014. "Structural breaks in volatility spillovers between international financial markets: Contagion or mere interdependence?," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 331-342.
- Gallo, Giampiero M. & Otranto, Edoardo, 2015. "Forecasting realized volatility with changing average levels," International Journal of Forecasting, Elsevier, vol. 31(3), pages 620-634.
- Ole E. Barndorff-Nielsen, 2004.
"Power and Bipower Variation with Stochastic Volatility and Jumps,"
Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
- Ole E. Barndorff-Nielsen & Neil Shephard, 2003. "Power and bipower variation with stochastic volatility and jumps," Economics Papers 2003-W17, Economics Group, Nuffield College, University of Oxford.
- McNeil, Alexander J., 1997. "Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory," ASTIN Bulletin, Cambridge University Press, vol. 27(1), pages 117-137, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Qiao, Gaoxiu & Teng, Yuxin & Li, Weiping & Liu, Wenwen, 2019. "Improving volatility forecasting based on Chinese volatility index information: Evidence from CSI 300 index and futures markets," The North American Journal of Economics and Finance, Elsevier, vol. 49(C), pages 133-151.
- Xiao, Yang, 2020. "The risk spillovers from the Chinese stock market to major East Asian stock markets: A MSGARCH-EVT-copula approach," International Review of Economics & Finance, Elsevier, vol. 65(C), pages 173-186.
- Dariusz Gołȩbiewski & Tomasz Barszcz & Wioletta Skrodzka & Igor Wojnicki & Andrzej Bielecki, 2022. "A New Approach to Risk Management in the Power Industry Based on Systems Theory," Energies, MDPI, vol. 15(23), pages 1-19, November.
- Shi Bo & Minheng Xiao, 2022. "Data-Driven Risk Measurement by SV-GARCH-EVT Model," Papers 2201.09434, arXiv.org, revised Jul 2024.
- Dalci, Ilhan & Ozyapici, Hasan, 2018. "Working capital management policy in health care: The effect of leverage," Health Policy, Elsevier, vol. 122(11), pages 1266-1272.
- repec:agr:journl:v:4(621):y:2019:i:4(621):p:201-218 is not listed on IDEAS
- Alkathery, Mohammed A. & Chaudhuri, Kausik & Nasir, Muhammad Ali, 2022. "Implications of clean energy, oil and emissions pricing for the GCC energy sector stock," Energy Economics, Elsevier, vol. 112(C).
- Siva Kiran GUPTHA. K & Prabhakar RAO. R, 2019. "GARCH based VaR estimation: An empirical evidence from BRICS stock markets," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(4(621), W), pages 201-218, Winter.
- Min Liu & Wei‐Chong Choo & Chi‐Chuan Lee & Chien‐Chiang Lee, 2023. "Trading volume and realized volatility forecasting: Evidence from the China stock market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 76-100, January.
- Xiaojian Su & Chao Deng, 2019. "The heterogeneous effects of exchange rate and stock market on CO2 emission allowance price in China: A panel quantile regression approach," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-11, August.
- Hong Qiu & Genhua Hu & Yuhong Yang & Jeffrey Zhang & Ting Zhang, 2020. "Modeling the Risk of Extreme Value Dependence in Chinese Regional Carbon Emission Markets," Sustainability, MDPI, vol. 12(19), pages 1-15, September.
- Chen, Yan & Yu, Wenqiang, 2020. "Setting the margins of Hang Seng Index Futures on different positions using an APARCH-GPD Model based on extreme value theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
- Xie, Nan & Wang, Zongrun & Chen, Sicen & Gong, Xu, 2019. "Forecasting downside risk in China’s stock market based on high-frequency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 530-541.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liu, Guangqiang & Wang, Yan & Chen, Xiaodan & Zhang, Yifeng & Shang, Yue, 2020. "Forecasting volatility of the Chinese stock markets using TVP HAR-type models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
- Santos, Douglas G. & Candido, Osvaldo & Tófoli, Paula V., 2022. "Forecasting risk measures using intraday and overnight information," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
- Pan, Zhiyuan & Liu, Li, 2018. "Forecasting stock return volatility: A comparison between the roles of short-term and long-term leverage effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 168-180.
- Papantonis, Ioannis & Rompolis, Leonidas & Tzavalis, Elias, 2023. "Improving variance forecasts: The role of Realized Variance features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1221-1237.
- Bee, Marco & Dupuis, Debbie J. & Trapin, Luca, 2016. "Realizing the extremes: Estimation of tail-risk measures from a high-frequency perspective," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 86-99.
- Papantonis Ioannis & Rompolis Leonidas S. & Tzavalis Elias & Agapitos Orestis, 2023. "Augmenting the Realized-GARCH: the role of signed-jumps, attenuation-biases and long-memory effects," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 27(2), pages 171-198, April.
- Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2016.
"Exploiting the errors: A simple approach for improved volatility forecasting,"
Journal of Econometrics, Elsevier, vol. 192(1), pages 1-18.
- Tim Bollerslev & Andrew J. Patton & Rogier Quaedvlieg, 2015. "Exploiting the Errors: A Simple Approach for Improved Volatility Forecasting," CREATES Research Papers 2015-14, Department of Economics and Business Economics, Aarhus University.
- Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023.
"The contribution of jump signs and activity to forecasting stock price volatility,"
Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
- , 2019. "The Contribution of Jump Signs and Activity to Forecasting Stock Price Volatility," Working Papers 1902, Federal Reserve Bank of Dallas, revised 17 Dec 2022.
- Ruijun Bu & Rodrigo Hizmeri & Marwan Izzeldin & Anthony Murphy & Mike G. Tsionas, 2021. "The Contribution of Jump Signs and Activity to Forecasting Stock Price Volatility," Working Papers 202109, University of Liverpool, Department of Economics.
- F. Lilla, 2017. "High Frequency vs. Daily Resolution: the Economic Value of Forecasting Volatility Models - 2nd ed," Working Papers wp1099, Dipartimento Scienze Economiche, Universita' di Bologna.
- Barbara Będowska-Sójka, 2018. "Is intraday data useful for forecasting VaR? The evidence from EUR/PLN exchange rate," Risk Management, Palgrave Macmillan, vol. 20(4), pages 326-346, November.
- Ubukata, Masato & Watanabe, Toshiaki, 2015. "Evaluating the performance of futures hedging using multivariate realized volatility," Journal of the Japanese and International Economies, Elsevier, vol. 38(C), pages 148-171.
- Zhu, Sha & Liu, Qiuhong & Wang, Yan & Wei, Yu & Wei, Guiwu, 2019. "Which fear index matters for predicting US stock market volatilities: Text-counts or option based measurement?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
- Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
- Bekierman, Jeremias & Manner, Hans, 2018. "Forecasting realized variance measures using time-varying coefficient models," International Journal of Forecasting, Elsevier, vol. 34(2), pages 276-287.
- F. Lilla, 2016. "High Frequency vs. Daily Resolution: the Economic Value of Forecasting Volatility Models," Working Papers wp1084, Dipartimento Scienze Economiche, Universita' di Bologna.
- Özbekler, Ali Gencay & Kontonikas, Alexandros & Triantafyllou, Athanasios, 2021.
"Volatility forecasting in European government bond markets,"
International Journal of Forecasting, Elsevier, vol. 37(4), pages 1691-1709.
- Özbekler, Ali Gencay & Kontonikas, Alexandros & Triantafyllou, Athanasios, 2020. "Volatility Forecasting in European Government Bond Markets," Essex Finance Centre Working Papers 27362, University of Essex, Essex Business School.
- Audrino, Francesco & Sigrist, Fabio & Ballinari, Daniele, 2020. "The impact of sentiment and attention measures on stock market volatility," International Journal of Forecasting, Elsevier, vol. 36(2), pages 334-357.
- Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
- Harvey, Andrew & Palumbo, Dario, 2023.
"Score-driven models for realized volatility,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Harvey, A. & Palumbo, D., 2019. "Score-Driven Models for Realized Volatility," Cambridge Working Papers in Economics 1950, Faculty of Economics, University of Cambridge.
- Richard T. Baillie & Fabio Calonaci & Dooyeon Cho & Seunghwa Rho, 2019. "Long Memory, Realized Volatility and HAR Models," Working Papers 881, Queen Mary University of London, School of Economics and Finance.
More about this item
Keywords
Realized volatility; HARQ; Extreme value theory; VaR;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:499:y:2018:i:c:p:288-297. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.