IDEAS home Printed from https://ideas.repec.org/a/bla/obuest/v83y2021i1p32-65.html
   My bibliography  Save this article

Classical and Bayesian Inference for Income Distributions using Grouped Data

Author

Listed:
  • Tobias Eckernkemper
  • Bastian Gribisch

Abstract

We propose a general framework for Maximum Likelihood (ML) and Bayesian estimation of income distributions based on grouped data information. The asymptotic properties of the ML estimators are derived and Bayesian parameter estimates are obtained by Monte Carlo Markov Chain (MCMC) techniques. A comprehensive simulation experiment shows that obtained estimates of the income distribution are very precise and that the proposed estimation framework improves the statistical precision of parameter estimates relative to the classical multinomial likelihood. The estimation approach is finally applied to a set of countries included in the World Bank database PovcalNet.

Suggested Citation

  • Tobias Eckernkemper & Bastian Gribisch, 2021. "Classical and Bayesian Inference for Income Distributions using Grouped Data," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(1), pages 32-65, February.
  • Handle: RePEc:bla:obuest:v:83:y:2021:i:1:p:32-65
    DOI: 10.1111/obes.12396
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/obes.12396
    Download Restriction: no

    File URL: https://libkey.io/10.1111/obes.12396?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Griffiths, William & Hajargasht, Gholamreza, 2015. "On GMM estimation of distributions from grouped data," Economics Letters, Elsevier, vol. 126(C), pages 122-126.
    2. Kazuhiko Kakamu & Haruhisa Nishino, 2019. "Bayesian Estimation of Beta-type Distribution Parameters Based on Grouped Data," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 625-645, August.
    3. James B. McDonald, 2008. "Some Generalized Functions for the Size Distribution of Income," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 3, pages 37-55, Springer.
    4. Chotikapanich, Duangkamon & Griffiths, William E. & Rao, D. S. Prasada, 2007. "Estimating and Combining National Income Distributions Using Limited Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 97-109, January.
    5. Cowell, Frank A., 1991. "Grouping bounds for inequality measures under alternative informational assumptions," Journal of Econometrics, Elsevier, vol. 48(1-2), pages 1-14.
    6. Jörg Stoye, 2010. "Partial identification of spread parameters," Quantitative Economics, Econometric Society, vol. 1(2), pages 323-357, November.
    7. Yi-Ting Chen, 2018. "A Unified Approach to Estimating and Testing Income Distributions With Grouped Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(3), pages 438-455, July.
    8. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    9. William E. Griffiths and Gholamreza Hajargasht, 2012. "GMM Estimation of Mixtures from Grouped Data:," Department of Economics - Working Papers Series 1148, The University of Melbourne.
    10. Kazuhiko Kakamu, 2016. "Simulation Studies Comparing Dagum and Singh–Maddala Income Distributions," Computational Economics, Springer;Society for Computational Economics, vol. 48(4), pages 593-605, December.
    11. Parker, Simon C., 1999. "The generalised beta as a model for the distribution of earnings," Economics Letters, Elsevier, vol. 62(2), pages 197-200, February.
    12. Gholamreza Hajargasht & William E. Griffiths & Joseph Brice & D.S. Prasada Rao & Duangkamon Chotikapanich, 2012. "Inference for Income Distributions Using Grouped Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 563-575, May.
    13. Gholamreza Hajargasht & William E. Griffiths, 2020. "Minimum distance estimation of parametric Lorenz curves based on grouped data," Econometric Reviews, Taylor & Francis Journals, vol. 39(4), pages 344-361, April.
    14. Charles M. Beach & Russell Davidson, 1983. "Distribution-Free Statistical Inference with Lorenz Curves and Income Shares," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 50(4), pages 723-735.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mathias Silva, 2023. "Parametric estimation of income distributions using grouped data: an Approximate Bayesian Computation approach [Working Papers / Documents de travail]," Working Papers hal-04066544, HAL.
    2. Kazuhiko Kakamu, 2022. "Bayesian analysis of mixtures of lognormal distribution with an unknown number of components from grouped data," Papers 2210.05115, arXiv.org, revised Sep 2023.
    3. Bolch, Kimberly B. & Ceriani, Lidia & López-Calva, Luis F., 2022. "The arithmetics and politics of domestic resource mobilization for poverty eradication," World Development, Elsevier, vol. 149(C).
    4. Mathias Silva, 2023. "Parametric models of income distributions integrating misreporting and non-response mechanisms," AMSE Working Papers 2311, Aix-Marseille School of Economics, France.
    5. Tsvetana Spasova, 2024. "Estimating Income Distributions From Grouped Data: A Minimum Quantile Distance Approach," Computational Economics, Springer;Society for Computational Economics, vol. 64(4), pages 2079-2096, October.
    6. Michel Lubrano & Zhou Xun, 2023. "The Bayesian approach to poverty measurement," Post-Print hal-04347292, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duangkamon Chotikapanich & William E. Griffiths & Gholamreza Hajargasht & Wasana Karunarathne & D. S. Prasada Rao, 2018. "Using the GB2 Income Distribution," Econometrics, MDPI, vol. 6(2), pages 1-24, April.
    2. Alexis Akira Toda & Yulong Wang, 2021. "Efficient minimum distance estimation of Pareto exponent from top income shares," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(2), pages 228-243, March.
    3. Vanesa Jorda & José María Sarabia & Markus Jäntti, 2021. "Inequality measurement with grouped data: Parametric and non‐parametric methods," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 964-984, July.
    4. Lee, Ji Hyung & Sasaki, Yuya & Toda, Alexis Akira & Wang, Yulong, 2024. "Tuning parameter-free nonparametric density estimation from tabulated summary data," Journal of Econometrics, Elsevier, vol. 238(1).
    5. Kazuhiko Kakamu, 2022. "Bayesian analysis of mixtures of lognormal distribution with an unknown number of components from grouped data," Papers 2210.05115, arXiv.org, revised Sep 2023.
    6. Duangkamon Chotikapanich & William Griffiths & Wasana Karunarathne & D.S. Prasada Rao, 2013. "Calculating Poverty Measures from the Generalised Beta Income Distribution," The Economic Record, The Economic Society of Australia, vol. 89, pages 48-66, June.
    7. Gholamreza Hajargasht & William E. Griffiths, 2016. "Inference for Lorenz Curves," Department of Economics - Working Papers Series 2022, The University of Melbourne.
    8. Tsvetana Spasova, 2024. "Estimating Income Distributions From Grouped Data: A Minimum Quantile Distance Approach," Computational Economics, Springer;Society for Computational Economics, vol. 64(4), pages 2079-2096, October.
    9. Kazuhiko Kakamu & Haruhisa Nishino, 2019. "Bayesian Estimation of Beta-type Distribution Parameters Based on Grouped Data," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 625-645, August.
    10. Sugasawa, Shonosuke & Kobayashi, Genya & Kawakubo, Yuki, 2020. "Estimation and inference for area-wise spatial income distributions from grouped data," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
    11. Chotikapanich, Duangkamon & Griffiths, William E. & Rao, D.S. Prasada & Karunarathne, Wasana, 2014. "Income Distributions, Inequality, and Poverty in Asia, 1992–2010," ADBI Working Papers 468, Asian Development Bank Institute.
    12. Hajargasht, Gholamreza & Griffiths, William E., 2013. "Pareto–lognormal distributions: Inequality, poverty, and estimation from grouped income data," Economic Modelling, Elsevier, vol. 33(C), pages 593-604.
    13. Michał Brzeziński, 2013. "Parametric Modelling of Income Distribution in Central and Eastern Europe," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 5(3), pages 207-230, September.
    14. Griffiths, William & Hajargasht, Gholamreza, 2015. "On GMM estimation of distributions from grouped data," Economics Letters, Elsevier, vol. 126(C), pages 122-126.
    15. Duangkamon Chotikapanich & William E. Griffiths & Gholamreza Hajargasht & Wasana Karunarathne & D.S. Prasada Rao, 2018. "Using the GB2 Income Distribution: A Review," Department of Economics - Working Papers Series 2036, The University of Melbourne.
    16. Coimbra, Nuno & Kim, Daisoon & Rey, Hélène, 2022. "Central Bank Policy and the concentration of risk: Empirical estimates," Journal of Monetary Economics, Elsevier, vol. 125(C), pages 182-198.
    17. Mathias Silva, 2023. "Parametric estimation of income distributions using grouped data: an Approximate Bayesian Computation approach [Working Papers / Documents de travail]," Working Papers hal-04066544, HAL.
    18. Flachaire, Emmanuel & Nunez, Olivier, 2007. "Estimation of the income distribution and detection of subpopulations: An explanatory model," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3368-3380, April.
    19. Chotikapanich, Duangkamon & Griffiths, William E, 2002. "Estimating Lorenz Curves Using a Dirichlet Distribution," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 290-295, April.
    20. William E. Griffiths and Gholamreza Hajargasht, 2012. "GMM Estimation of Mixtures from Grouped Data:," Department of Economics - Working Papers Series 1148, The University of Melbourne.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:obuest:v:83:y:2021:i:1:p:32-65. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/sfeixuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.