IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/59082.html
   My bibliography  Save this paper

Least squares estimation for GARCH (1,1) model with heavy tailed errors

Author

Listed:
  • Preminger, Arie
  • Storti, Giuseppe

Abstract

GARCH (1,1) models are widely used for modelling processes with time varying volatility. These include financial time series, which can be particularly heavy tailed. In this paper, we propose a log-transform-based least squares estimator (LSE) for the GARCH (1,1) model. The asymptotic properties of the LSE are studied under very mild moment conditions for the errors. We establish the consistency, asymptotic normality at the standard convergence rate of square root-of-n for our estimator. The finite sample properties are assessed by means of an extensive simulation study. Our results show that LSE is more accurate than the quasi-maximum likelihood estimator (QMLE) for heavy tailed errors. Finally, we provide some empirical evidence on two financial time series considering daily and high frequency returns. The results of the empirical analysis suggest that in some settings, depending on the specific measure of volatility adopted, the LSE can allow for more accurate predictions of volatility than the usual Gaussian QMLE.

Suggested Citation

  • Preminger, Arie & Storti, Giuseppe, 2014. "Least squares estimation for GARCH (1,1) model with heavy tailed errors," MPRA Paper 59082, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:59082
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/59082/1/MPRA_paper_59082.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. White,Halbert, 1996. "Estimation, Inference and Specification Analysis," Cambridge Books, Cambridge University Press, number 9780521574464, January.
    2. Liang Peng, 2003. "Least absolute deviations estimation for ARCH and GARCH models," Biometrika, Biometrika Trust, vol. 90(4), pages 967-975, December.
    3. Berkes, István & Horváth, Lajos, 2003. "The rate of consistency of the quasi-maximum likelihood estimator," Statistics & Probability Letters, Elsevier, vol. 61(2), pages 133-143, January.
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. Sakata, Shinichi & White, Halbert, 2001. "S-estimation of nonlinear regression models with dependent and heterogeneous observations," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 5-72, July.
    6. Hall, Peter & Yao, Qiwei, 2003. "Inference in ARCH and GARCH models with heavy-tailed errors," LSE Research Online Documents on Economics 5875, London School of Economics and Political Science, LSE Library.
    7. Ding, Zhuanxin & Granger, Clive W. J., 1996. "Modeling volatility persistence of speculative returns: A new approach," Journal of Econometrics, Elsevier, vol. 73(1), pages 185-215, July.
    8. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    9. Andrews, Donald W K, 2001. "Testing When a Parameter Is on the Boundary of the Maintained Hypothesis," Econometrica, Econometric Society, vol. 69(3), pages 683-734, May.
    10. Peter Hall & Qiwei Yao, 2003. "Inference in Arch and Garch Models with Heavy--Tailed Errors," Econometrica, Econometric Society, vol. 71(1), pages 285-317, January.
    11. Rekkas, M. & Wong, A., 2008. "Implementing likelihood-based inference for fat-tailed distributions," Finance Research Letters, Elsevier, vol. 5(1), pages 32-46, March.
    12. Maxwell B. Stinchcombe & Halbert White, 1992. "Some Measurability Results for Extrema of Random Functions Over Random Sets," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 59(3), pages 495-514.
    13. Huang, Da & Wang, Hansheng & Yao, Qiwei, 2008. "Estimating GARCH models: when to use what?," LSE Research Online Documents on Economics 5398, London School of Economics and Political Science, LSE Library.
    14. Lee, Sang-Won & Hansen, Bruce E., 1994. "Asymptotic Theory for the Garch(1,1) Quasi-Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 10(1), pages 29-52, March.
    15. Mukherjee, Kanchan, 2008. "M-Estimation In Garch Models," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1530-1553, December.
    16. Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(2), pages 247-264.
    17. Lumsdaine, Robin L, 1996. "Consistency and Asymptotic Normality of the Quasi-maximum Likelihood Estimator in IGARCH(1,1) and Covariance Stationary GARCH(1,1) Models," Econometrica, Econometric Society, vol. 64(3), pages 575-596, May.
    18. Peng, Liang & Yao, Qiwei, 2003. "Least absolute deviations estimation for ARCH and GARCH models," LSE Research Online Documents on Economics 5828, London School of Economics and Political Science, LSE Library.
    19. Christian Francq & Jean-Michel Zakoïan, 2013. "Estimating the Marginal Law of a Time Series With Applications to Heavy-Tailed Distributions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(4), pages 412-425, October.
    20. Ruiz, Esther, 1994. "Quasi-maximum likelihood estimation of stochastic volatility models," Journal of Econometrics, Elsevier, vol. 63(1), pages 289-306, July.
    21. Andrews, Beth, 2012. "Rank-Based Estimation For Garch Processes," Econometric Theory, Cambridge University Press, vol. 28(5), pages 1037-1064, October.
    22. Da Huang & Hansheng Wang & Qiwei Yao, 2008. "Estimating GARCH models: when to use what?," Econometrics Journal, Royal Economic Society, vol. 11(1), pages 27-38, March.
    23. Francq, Christian & Zakoian, Jean-Michel, 2007. "Quasi-maximum likelihood estimation in GARCH processes when some coefficients are equal to zero," Stochastic Processes and their Applications, Elsevier, vol. 117(9), pages 1265-1284, September.
    24. Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(3), pages 318-334, September.
    25. Gençay, Ramazan & Dacorogna, Michel & Muller, Ulrich A. & Pictet, Olivier & Olsen, Richard, 2001. "An Introduction to High-Frequency Finance," Elsevier Monographs, Elsevier, edition 1, number 9780122796715.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:bgu:wpaper:0607 is not listed on IDEAS
    2. PREMINGER, Arie & STORTI, Giuseppe, 2006. "A GARCH (1,1) estimator with (almost) no moment conditions on the error term," LIDAM Discussion Papers CORE 2006068, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Aguilar, Mike & Hill, Jonathan B., 2015. "Robust score and portmanteau tests of volatility spillover," Journal of Econometrics, Elsevier, vol. 184(1), pages 37-61.
    4. M. Jiménez Gamero, 2014. "On the empirical characteristic function process of the residuals in GARCH models and applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 409-432, June.
    5. Zhu, Ke & Ling, Shiqing, 2013. "Global self-weighted and local quasi-maximum exponential likelihood estimators for ARMA-GARCH/IGARCH models," MPRA Paper 51509, University Library of Munich, Germany.
    6. Hill, Jonathan B. & Prokhorov, Artem, 2016. "GEL estimation for heavy-tailed GARCH models with robust empirical likelihood inference," Journal of Econometrics, Elsevier, vol. 190(1), pages 18-45.
    7. Zhu, Ke & Li, Wai Keung, 2013. "A new Pearson-type QMLE for conditionally heteroskedastic models," MPRA Paper 52344, University Library of Munich, Germany.
    8. Koo, Bonsoo & Linton, Oliver, 2015. "Let’S Get Lade: Robust Estimation Of Semiparametric Multiplicative Volatility Models," Econometric Theory, Cambridge University Press, vol. 31(4), pages 671-702, August.
    9. Spierdijk, Laura, 2016. "Confidence intervals for ARMA–GARCH Value-at-Risk: The case of heavy tails and skewness," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 545-559.
    10. Li, Dong & Zhang, Xingfa & Zhu, Ke & Ling, Shiqing, 2018. "The ZD-GARCH model: A new way to study heteroscedasticity," Journal of Econometrics, Elsevier, vol. 202(1), pages 1-17.
    11. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    12. Jianqing Fan & Lei Qi & Dacheng Xiu, 2014. "Quasi-Maximum Likelihood Estimation of GARCH Models With Heavy-Tailed Likelihoods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 178-191, April.
    13. Li, Dong & Ling, Shiqing & Zhu, Ke, 2016. "ZD-GARCH model: a new way to study heteroscedasticity," MPRA Paper 68621, University Library of Munich, Germany.
    14. Delaigle, Aurore & Meister, Alexander & Rombouts, Jeroen, 2016. "Root-T consistent density estimation in GARCH models," Journal of Econometrics, Elsevier, vol. 192(1), pages 55-63.
    15. Luger, Richard, 2012. "Finite-sample bootstrap inference in GARCH models with heavy-tailed innovations," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3198-3211.
    16. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    17. Dennis Kristensen, 2009. "On stationarity and ergodicity of the bilinear model with applications to GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 125-144, January.
    18. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    19. Christian Francq & Jean-Michel Zakoïan, 2013. "Optimal predictions of powers of conditionally heteroscedastic processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(2), pages 345-367, March.
    20. Christian Francq & Jean-Michel Zakoïan, 2008. "A Tour in the Asymptotic Theory of GARCH Estimation," Working Papers 2008-03, Center for Research in Economics and Statistics.
    21. Ling, Shiqing, 2007. "Self-weighted and local quasi-maximum likelihood estimators for ARMA-GARCH/IGARCH models," Journal of Econometrics, Elsevier, vol. 140(2), pages 849-873, October.

    More about this item

    Keywords

    GARCH (1; 1); least squares estimation; consistency; asymptotic normality.;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:59082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.