IDEAS home Printed from https://ideas.repec.org/a/eee/finana/v63y2019icp131-146.html
   My bibliography  Save this article

Modeling intraday volatility of European bond markets: A data filtering application

Author

Listed:
  • Zhang, Hanyu
  • Dufour, Alfonso

Abstract

This paper studies the intraday volatility of European government bonds under the framework of the multiplicative component GARCH model (Engle and Sokalska, 2012). Intraday return volatility is specified as the product of daily volatility, intraday seasonality, and a unit GARCH process. The model is applied to 10-year European government bonds during the sovereign debt crisis. We observe large transitory intraday volatility often due to illiquidity effects and outliers. We suggest a flexible and effective procedure for jointly filtering mid-quote prices and estimating volatility models. Finally, we show that intraday data contain relevant information for daily volatility forecasts.

Suggested Citation

  • Zhang, Hanyu & Dufour, Alfonso, 2019. "Modeling intraday volatility of European bond markets: A data filtering application," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 131-146.
  • Handle: RePEc:eee:finana:v:63:y:2019:i:c:p:131-146
    DOI: 10.1016/j.irfa.2019.02.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1057521918300942
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.irfa.2019.02.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hasbrouck, Joel, 1991. "Measuring the Information Content of Stock Trades," Journal of Finance, American Finance Association, vol. 46(1), pages 179-207, March.
    2. Michael J. Fleming & Jose A. Lopez, 1999. "Heat waves, meteor showers, and trading volume: an analysis of volatility spillovers in the U.S. Treasury market," Working Papers in Applied Economic Theory 99-09, Federal Reserve Bank of San Francisco.
    3. Michael J. Fleming, 2003. "Measuring treasury market liquidity," Economic Policy Review, Federal Reserve Bank of New York, issue Sep, pages 83-108.
    4. Tim Bollerslev & Benjamin Hood & John Huss & Lasse Heje Pedersen, 2018. "Risk Everywhere: Modeling and Managing Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 31(7), pages 2729-2773.
    5. Deo, Rohit & Hurvich, Clifford & Lu, Yi, 2006. "Forecasting realized volatility using a long-memory stochastic volatility model: estimation, prediction and seasonal adjustment," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 29-58.
    6. Brownlees, C.T. & Gallo, G.M., 2006. "Financial econometric analysis at ultra-high frequency: Data handling concerns," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2232-2245, December.
    7. Jones, Charles M. & Lamont, Owen & Lumsdaine, Robin L., 1998. "Macroeconomic news and bond market volatility," Journal of Financial Economics, Elsevier, vol. 47(3), pages 315-337, March.
    8. Pasquariello, Paolo & Vega, Clara, 2009. "The on-the-run liquidity phenomenon," Journal of Financial Economics, Elsevier, vol. 92(1), pages 1-24, April.
    9. Andrei Kirilenko & Albert S. Kyle & Mehrdad Samadi & Tugkan Tuzun, 2017. "The Flash Crash: High-Frequency Trading in an Electronic Market," Journal of Finance, American Finance Association, vol. 72(3), pages 967-998, June.
    10. de Goeij, P. C. & Marquering, W., 2004. "Modeling the conditional covariance between stock and bond returns : A multivariate GARCH approach," Other publications TiSEM 94fe5ada-715a-4339-b94c-f, Tilburg University, School of Economics and Management.
    11. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    12. R. F. Engle & A. J. Patton, 2001. "What good is a volatility model?," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 237-245.
    13. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    14. F. M. Bandi & J. R. Russell, 2008. "Microstructure Noise, Realized Variance, and Optimal Sampling," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 75(2), pages 339-369.
    15. Alessandro Beber & Michael W. Brandt & Kenneth A. Kavajecz, 2009. "Flight-to-Quality or Flight-to-Liquidity? Evidence from the Euro-Area Bond Market," The Review of Financial Studies, Society for Financial Studies, vol. 22(3), pages 925-957, March.
    16. Dimitriou, Dimitrios & Kenourgios, Dimitris & Simos, Theodore, 2013. "Global financial crisis and emerging stock market contagion: A multivariate FIAPARCH–DCC approach," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 46-56.
    17. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    18. De Bruyckere, Valerie & Gerhardt, Maria & Schepens, Glenn & Vander Vennet, Rudi, 2013. "Bank/sovereign risk spillovers in the European debt crisis," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 4793-4809.
    19. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    20. Peter de Goeij, 2004. "Modeling the Conditional Covariance Between Stock and Bond Returns: A Multivariate GARCH Approach," Journal of Financial Econometrics, Oxford University Press, vol. 2(4), pages 531-564.
    21. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    22. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    23. Ehrmann, Michael & Fratzscher, Marcel, 2017. "Euro area government bonds – Fragmentation and contagion during the sovereign debt crisis," Journal of International Money and Finance, Elsevier, vol. 70(C), pages 26-44.
    24. Charlotte Christiansen, 2007. "Volatility‐Spillover Effects in European Bond Markets," European Financial Management, European Financial Management Association, vol. 13(5), pages 923-948, November.
    25. O. E. Barndorff-Nielsen & P. Reinhard Hansen & A. Lunde & N. Shephard, 2009. "Realized kernels in practice: trades and quotes," Econometrics Journal, Royal Economic Society, vol. 12(3), pages 1-32, November.
    26. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    27. Ole E. Barndorff-Nielsen & Neil Shephard, 2002. "Estimating quadratic variation using realized variance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 457-477.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Haijun & Xue, Feng, 2021. "Analysis of stock market volatility: Adjusted VPIN with high-frequency data," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 210-222.
    2. Özbekler, Ali Gencay & Kontonikas, Alexandros & Triantafyllou, Athanasios, 2021. "Volatility forecasting in European government bond markets," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1691-1709.
    3. Sensoy, Ahmet & Serdengeçti, Süleyman, 2020. "Impact of portfolio flows and heterogeneous expectations on FX jumps: Evidence from an emerging market," International Review of Financial Analysis, Elsevier, vol. 68(C).
    4. Kim, Jong-Min & Kim, Dong H. & Jung, Hojin, 2021. "Estimating yield spreads volatility using GARCH-type models," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    5. Kin-Boon Tang & Shao-Jye Wong & Shih-Kuei Lin & Szu-Lang Liao, 2020. "Excess volatility and market efficiency in government bond markets: the ASEAN-5 context," Journal of Asset Management, Palgrave Macmillan, vol. 21(2), pages 154-165, March.
    6. Zhang, Hanyu & Dufour, Alfonso, 2024. "Managing portfolio risk during crisis times: A dynamic conditional correlation perspective," The Quarterly Review of Economics and Finance, Elsevier, vol. 94(C), pages 241-251.
    7. Esparcia, Carlos & López, Raquel, 2024. "Performance of crypto-Forex portfolios based on intraday data," Research in International Business and Finance, Elsevier, vol. 69(C).
    8. Baker, H. Kent & Kumar, Satish & Goyal, Kirti & Sharma, Anuj, 2021. "International review of financial analysis: A retrospective evaluation between 1992 and 2020," International Review of Financial Analysis, Elsevier, vol. 78(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharma, Prateek & Vipul,, 2016. "Forecasting stock market volatility using Realized GARCH model: International evidence," The Quarterly Review of Economics and Finance, Elsevier, vol. 59(C), pages 222-230.
    2. Henning Fischer & Ángela Blanco‐FERNÁndez & Peter Winker, 2016. "Predicting Stock Return Volatility: Can We Benefit from Regression Models for Return Intervals?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(2), pages 113-146, March.
    3. Patton, Andrew J., 2011. "Data-based ranking of realised volatility estimators," Journal of Econometrics, Elsevier, vol. 161(2), pages 284-303, April.
    4. Min Liu & Chien‐Chiang Lee & Wei‐Chong Choo, 2021. "An empirical study on the role of trading volume and data frequency in volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 792-816, August.
    5. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    6. McAleer, Michael & Medeiros, Marcelo C., 2008. "A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries," Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
    7. Neil Shephard & Kevin Sheppard, 2010. "Realising the future: forecasting with high-frequency-based volatility (HEAVY) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 197-231.
    8. Wen Cheong Chin & Min Cherng Lee, 2018. "S&P500 volatility analysis using high-frequency multipower variation volatility proxies," Empirical Economics, Springer, vol. 54(3), pages 1297-1318, May.
    9. Hansen, Peter Reinhard & Lunde, Asger, 2006. "Consistent ranking of volatility models," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 97-121.
    10. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
    11. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    12. Laurent, Sébastien & Rombouts, Jeroen V.K. & Violante, Francesco, 2013. "On loss functions and ranking forecasting performances of multivariate volatility models," Journal of Econometrics, Elsevier, vol. 173(1), pages 1-10.
    13. Papantonis, Ioannis & Rompolis, Leonidas & Tzavalis, Elias, 2023. "Improving variance forecasts: The role of Realized Variance features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1221-1237.
    14. Antonakakis, Nikolaos & Darby, Julia, 2012. "Forecasting Volatility in Developing Countries' Nominal Exchange Returns," MPRA Paper 40875, University Library of Munich, Germany.
    15. Guglielmo Maria Caporale & Menelaos Karanasos & Stavroula Yfanti, 2019. "Macro-Financial Linkages in the High-Frequency Domain: The Effects of Uncertainty on Realized Volatility," CESifo Working Paper Series 8000, CESifo.
    16. repec:uts:finphd:39 is not listed on IDEAS
    17. O’Sullivan, Conall & Papavassiliou, Vassilios G., 2020. "On the term structure of liquidity in the European sovereign bond market," Journal of Banking & Finance, Elsevier, vol. 114(C).
    18. Claudeci Da Silva & Hugo Agudelo Murillo & Joaquim Miguel Couto, 2014. "Early Warning Systems: Análise De Ummodelo Probit De Contágio De Crise Dos Estados Unidos Para O Brasil(2000-2010)," Anais do XL Encontro Nacional de Economia [Proceedings of the 40th Brazilian Economics Meeting] 110, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    19. Janus, Paweł & Koopman, Siem Jan & Lucas, André, 2014. "Long memory dynamics for multivariate dependence under heavy tails," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 187-206.
    20. Cristina Amado & Annastiina Silvennoinen & Timo Teräsvirta, 2018. "Models with Multiplicative Decomposition of Conditional Variances and Correlations," CREATES Research Papers 2018-14, Department of Economics and Business Economics, Aarhus University.
    21. Wang, Chengyang & Nishiyama, Yoshihiko, 2015. "Volatility forecast of stock indices by model averaging using high-frequency data," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 324-337.

    More about this item

    Keywords

    Intraday GARCH; European Bond Markets; Data Filters;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:63:y:2019:i:c:p:131-146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.