IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v88y2020icp320-340.html
   My bibliography  Save this article

Is the slope of the Phillips curve time-varying? Evidence from unobserved components models

Author

Listed:
  • Fu, Bowen

Abstract

This paper formally tests for time variation in the slope of the Phillips curve using a variety of measures of inflation expectations and real economic slack. We find that time variation in the slope of the Phillips curve depends on the measure of inflation expectations rather than the measure of real economic slack. We find strong evidence in support of the time-varying slopes of the Phillips curve with different measures of inflation expectations. Thus, we conclude that the slope of the Phillips curve is time-varying.

Suggested Citation

  • Fu, Bowen, 2020. "Is the slope of the Phillips curve time-varying? Evidence from unobserved components models," Economic Modelling, Elsevier, vol. 88(C), pages 320-340.
  • Handle: RePEc:eee:ecmode:v:88:y:2020:i:c:p:320-340
    DOI: 10.1016/j.econmod.2019.09.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999319308417
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2019.09.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John M. Roberts, 2006. "Monetary Policy and Inflation Dynamics," International Journal of Central Banking, International Journal of Central Banking, vol. 2(3), September.
    2. Joshua C. C. Chan & Gary Koop & Simon M. Potter, 2016. "A Bounded Model of Time Variation in Trend Inflation, Nairu and the Phillips Curve," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(3), pages 551-565, April.
    3. Olivier Coibion & Yuriy Gorodnichenko, 2015. "Is the Phillips Curve Alive and Well after All? Inflation Expectations and the Missing Disinflation," American Economic Journal: Macroeconomics, American Economic Association, vol. 7(1), pages 197-232, January.
    4. Laurence Ball & Sandeep Mazumder, 2011. "Inflation Dynamics and the Great Recession," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 42(1 (Spring), pages 337-405.
    5. Karlsson, Sune & Österholm, Pär, 2018. "Is the US Phillips Curve Stable? Evidence from Bayesian VARs," Working Papers 2018:5, Örebro University, School of Business.
    6. Frühwirth-Schnatter, Sylvia & Wagner, Helga, 2010. "Stochastic model specification search for Gaussian and partial non-Gaussian state space models," Journal of Econometrics, Elsevier, vol. 154(1), pages 85-100, January.
    7. Joshua C. C. Chan, 2018. "Specification tests for time-varying parameter models with stochastic volatility," Econometric Reviews, Taylor & Francis Journals, vol. 37(8), pages 807-823, September.
    8. Joshua C C Chan & Angelia L Grant, 2017. "Measuring the output gap using stochastic model specification search," CAMA Working Papers 2017-02, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    9. Guido Ascari, 2004. "Staggered Prices and Trend Inflation: Some Nuisances," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 7(3), pages 642-667, July.
    10. Joshua C.C. Chan & Gary Koop & Roberto Leon-Gonzalez & Rodney W. Strachan, 2012. "Time Varying Dimension Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 358-367, January.
    11. Eric Eisenstat & Rodney W. Strachan, 2016. "Modelling Inflation Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(5), pages 805-820, August.
    12. Miguel A.G. Belmonte & Gary Koop & Dimitris Korobilis, 2014. "Hierarchical Shrinkage in Time‐Varying Parameter Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(1), pages 80-94, January.
    13. Jouchi Nakajima & Mike West, 2013. "Bayesian Analysis of Latent Threshold Dynamic Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 151-164, April.
    14. Berger, Tino & Everaert, Gerdie & Vierke, Hauke, 2016. "Testing for time variation in an unobserved components model for the U.S. economy," Journal of Economic Dynamics and Control, Elsevier, vol. 69(C), pages 179-208.
    15. Joshua C.C. Chan & Todd E. Clark & Gary Koop, 2018. "A New Model of Inflation, Trend Inflation, and Long‐Run Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(1), pages 5-53, February.
    16. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    17. Sharon Kozicki & Peter A. Tinsley, 2002. "Alternative sources of the lag dynamics of inflation," Research Working Paper RWP 02-12, Federal Reserve Bank of Kansas City.
    18. Robert J. Gordon, 2013. "The Phillips Curve is Alive and Well: Inflation and the NAIRU During the Slow Recovery," NBER Working Papers 19390, National Bureau of Economic Research, Inc.
    19. Kuttner, Ken & Robinson, Tim, 2010. "Understanding the flattening Phillips curve," The North American Journal of Economics and Finance, Elsevier, vol. 21(2), pages 110-125, August.
    20. Beveridge, Stephen & Nelson, Charles R., 1981. "A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the `business cycle'," Journal of Monetary Economics, Elsevier, vol. 7(2), pages 151-174.
    21. A. W. Phillips, 1958. "The Relation Between Unemployment and the Rate of Change of Money Wage Rates in the United Kingdom, 1861–1957," Economica, London School of Economics and Political Science, vol. 25(100), pages 283-299, November.
    22. Andrea Stella & James H. Stock, 2012. "A state-dependent model for inflation forecasting," International Finance Discussion Papers 1062, Board of Governors of the Federal Reserve System (U.S.).
    23. Joshua C. C. Chan & Eric Eisenstat, 2018. "Bayesian model comparison for time‐varying parameter VARs with stochastic volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(4), pages 509-532, June.
    24. Chang‐Jin Kim & Pym Manopimoke & Charles R. Nelson, 2014. "Trend Inflation and the Nature of Structural Breaks in the New Keynesian Phillips Curve," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 46(2-3), pages 253-266, March.
    25. Gaiotti, Eugenio, 2008. "Has globalisation changed the Phillips curve? Firm-level evidence on the effect of activity on prices," MPRA Paper 8389, University Library of Munich, Germany.
    26. Jane Ihrig & Steven B. Kamin & Deborah Lindner & Jaime Marquez, 2010. "Some Simple Tests of the Globalization and Inflation Hypothesis," International Finance, Wiley Blackwell, vol. 13(3), pages 343-375, December.
    27. Andrew Atkeson & Lee E. Ohanian, 2001. "Are Phillips curves useful for forecasting inflation?," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 25(Win), pages 2-11.
    28. Timothy Cogley & Argia M. Sbordone, 2008. "Trend Inflation, Indexation, and Inflation Persistence in the New Keynesian Phillips Curve," American Economic Review, American Economic Association, vol. 98(5), pages 2101-2126, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Annalisa Cristini & Piero Ferri, 2021. "Nonlinear models of the Phillips curve," Journal of Evolutionary Economics, Springer, vol. 31(4), pages 1129-1155, September.
    2. Conti, Antonio M., 2021. "Resurrecting the Phillips Curve in Low-Inflation Times," Economic Modelling, Elsevier, vol. 96(C), pages 172-195.
    3. Joshua C.C. Chan & Rodney W. Strachan, 2023. "Bayesian State Space Models In Macroeconometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 58-75, February.
    4. Chan, Joshua C.C. & Poon, Aubrey & Zhu, Dan, 2023. "High-dimensional conditionally Gaussian state space models with missing data," Journal of Econometrics, Elsevier, vol. 236(1).
    5. Bonam, Dennis & de Haan, Jakob & van Limbergen, Duncan, 2021. "Time-varying wage Phillips curves in the euro area with a new measure for labor market slack," Economic Modelling, Elsevier, vol. 96(C), pages 157-171.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Berger, Tino & Everaert, Gerdie & Vierke, Hauke, 2016. "Testing for time variation in an unobserved components model for the U.S. economy," Journal of Economic Dynamics and Control, Elsevier, vol. 69(C), pages 179-208.
    2. Michael O’Grady, 2019. "Estimating the Output, Inflation and Unemployment Gaps in Ireland using Bayesian Model Averaging," The Economic and Social Review, Economic and Social Studies, vol. 50(1), pages 35-76.
    3. Sune Karlsson & Pär Österholm, 2023. "Is the US Phillips curve stable? Evidence from Bayesian vector autoregressions," Scandinavian Journal of Economics, Wiley Blackwell, vol. 125(1), pages 287-314, January.
    4. Joshua C. C. Chan, 2018. "Specification tests for time-varying parameter models with stochastic volatility," Econometric Reviews, Taylor & Francis Journals, vol. 37(8), pages 807-823, September.
    5. Bańbura, Marta & Bobeica, Elena, 2023. "Does the Phillips curve help to forecast euro area inflation?," International Journal of Forecasting, Elsevier, vol. 39(1), pages 364-390.
    6. Sune Karlsson & Pär Österholm, 2020. "A note on the stability of the Swedish Phillips curve," Empirical Economics, Springer, vol. 59(6), pages 2573-2612, December.
    7. Baxa Jaromír & Plašil Miroslav & Vašíček Bořek, 2017. "Inflation and the steeplechase between economic activity variables: evidence for G7 countries," The B.E. Journal of Macroeconomics, De Gruyter, vol. 17(1), pages 1-42, January.
    8. Joshua C.C. Chan & Rodney W. Strachan, 2023. "Bayesian State Space Models In Macroeconometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 58-75, February.
    9. Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
    10. Michael McLeay & Silvana Tenreyro, 2020. "Optimal Inflation and the Identification of the Phillips Curve," NBER Macroeconomics Annual, University of Chicago Press, vol. 34(1), pages 199-255.
    11. McKnight, Stephen & Mihailov, Alexander & Rumler, Fabio, 2020. "Inflation forecasting using the New Keynesian Phillips Curve with a time-varying trend," Economic Modelling, Elsevier, vol. 87(C), pages 383-393.
    12. Panovska, Irina & Ramamurthy, Srikanth, 2022. "Decomposing the output gap with inflation learning," Journal of Economic Dynamics and Control, Elsevier, vol. 136(C).
    13. Kamber, Güneş & Wong, Benjamin, 2020. "Global factors and trend inflation," Journal of International Economics, Elsevier, vol. 122(C).
    14. Tallman, Ellis W. & Zaman, Saeed, 2017. "Forecasting inflation: Phillips curve effects on services price measures," International Journal of Forecasting, Elsevier, vol. 33(2), pages 442-457.
    15. Joshua C. C. Chan & Eric Eisenstat, 2018. "Bayesian model comparison for time‐varying parameter VARs with stochastic volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(4), pages 509-532, June.
    16. Karlsson, Sune & Österholm, Pär, 2018. "Is the US Phillips Curve Stable? Evidence from Bayesian VARs," Working Papers 2018:5, Örebro University, School of Business.
    17. Niko Hauzenberger, 2020. "Flexible Mixture Priors for Large Time-varying Parameter Models," Papers 2006.10088, arXiv.org, revised Nov 2020.
    18. Pym Manopimoke, 2015. "Globalization and International Inflation Dynamics: The Role of the Global Output Gap," PIER Discussion Papers 8, Puey Ungphakorn Institute for Economic Research.
    19. Pym Manopimoke, 2015. "Globalization and International Inflation Dynamics: The Role of the Global Output Gap," PIER Discussion Papers 8., Puey Ungphakorn Institute for Economic Research, revised Nov 2015.

    More about this item

    Keywords

    Bayesian estimation; The slope of the Phillips curve; Unobserved components model;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:88:y:2020:i:c:p:320-340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.